论文标题
整体曲率边界和贝蒂数字
Integral Curvature Bounds and Betti Numbers
论文作者
论文摘要
我们介绍了紧凑型riemannian歧管的贝蒂数字的上限,鉴于曲率运算符的最低特征值的平均值。然后,我们建立了一种新的曲率条件,以使用Bochner技术消失的贝蒂数字。这概括了Gallot和Petersen-Wink的结果。
We introduce an upper bound of the Betti numbers of a compact Riemannian manifold given integral bounds on the average of the lowest eigenvalues of the curvature operator. We then establish a new curvature condition for the Betti numbers to vanish using the Bochner technique. This generalizes results from Gallot and Petersen-Wink.