论文标题
\ {chi}(2)波导阵列中的拓扑边缘孤子
Topological edge solitons in \{chi}(2) waveguide arrays
论文作者
论文摘要
我们解决了\ {chi}(2)在su-schrieffer-heeger(SSH)波导阵列中出现的拓扑边缘孤子的形成。我们考虑边缘孤子,其基本频率(FF)分量属于拓扑间隙,而相位不匹配决定了第二个谐波(SH)分量是否属于SH波频谱的拓扑或微不足道的禁区。发现了两种代表性的边缘孤子类型,其中一种是阈值,并在FF组件中的拓扑边缘状态下分叉,而其他存在于功率阈值以上,而SH波中的拓扑边缘状态则来自拓扑边缘状态。两种类型的孤子都可以稳定。它们的稳定性,定位程度和内部结构在很大程度上取决于FF和SH波之间的相位不匹配。我们的结果开放了通过参数波相互作用控制拓扑非平凡状态的新前景。
We address the formation of \{chi}(2) topological edge solitons emerging in topologically nontrivial phase in Su-Schrieffer-Heeger (SSH) waveguide arrays. We consider edge solitons, whose fundamental frequency (FF) component belongs to the topological gap, while phase mismatch determines whether second harmonic (SH) component falls into topological or trivial forbidden gaps of the spectrum for SH wave. Two representative types of edge solitons are found, one of which is thresholdless and bifurcates from topological edge state in FF component, while other exists above power threshold and emanates from topological edge state in SH wave. Both types of solitons can be stable. Their stability, localization degree, and internal structure strongly depend on phase mismatch between FF and SH waves. Our results open new prospects for control of topologically nontrivial states by parametric wave interactions.