论文标题

使用Jastrow相关的反对称Geminal Power Ansatz达到化学精度

Towards chemical accuracy using the Jastrow correlated antisymmetrized geminal power ansatz

论文作者

Raghav, Abhishek, Maezono, Ryo, Hongo, Kenta, Sorella, Sandro, Nakano, Kousuke

论文摘要

在此,我们报告了使用晶格正规化扩散蒙特卡洛(LRDMC)的高斯-2(G2)中55个分子的准确雾化能量计算。我们将jastrow-slater的决定因素ANSATZ与更灵活的JSAGP(Jastrow相关的反对称的Geminal Power与单线相关性)Ansatz进行了比较。 AGP是由配对函数构建的,该功能明确地包括电子之间的成对相关性,因此,该ANSATZ有望在恢复相关能量方面更有效。首先在变异蒙特卡洛(VMC)水平上优化AGPS波函数,其中包括jastrow因子和节点表面优化。接下来是ANSATZ的LRDMC投影。值得注意的是,对于许多分子,使用JSAGPS ANSATZ获得的LRDMC雾化能达到化学精度($ \ sim $ 1 kcal/mol),对于大多数其他分子,雾化能量在$ \ sim $ 5 kcal/mol中是准确的。我们用JSAGPS获得了1.6 kcal/mol的平均绝对偏差,并使用JDFT(jastrow因子 + slater slater a Ansatals)ANSATZ获得了3.2 kcal/mol的平均绝对偏差。这项工作显示了柔性AGP ANSATZ对雾化能量计算和电子结构模拟的有效性。

Herein, we report accurate atomization energy calculations for 55 molecules in the Gaussian-2 (G2) set using lattice regularized diffusion Monte Carlo (LRDMC). We compare the Jastrow-Slater determinant ansatz with a more flexible JsAGPs (Jastrow correlated antisymmetrized geminal power with singlet correlation) ansatz. AGPs is built from pairing functions, which explicitly include pairwise correlations among electrons and hence, this ansatz is expected to be more efficient in recovering the correlation energy. The AGPs wave functions are first optimized at the variational Monte Carlo (VMC) level, which includes both the Jastrow factor and the nodal surface optimization. This is followed by the LRDMC projection of the ansatz. Remarkably, for many molecules, the LRDMC atomization energies obtained using the JsAGPs ansatz reach chemical accuracy ($\sim$1 kcal/mol) and for most other molecules, the atomization energies are accurate within $\sim$5 kcal/mol. We obtained a mean absolute deviation of 1.6 kcal/mol with JsAGPs and 3.2 kcal/mol with JDFT (Jastrow factor + Slater determinant with DFT orbitals) ansatz. This work shows the effectiveness of the flexible AGPs ansatz for atomization energy calculations and electronic structure simulations in general.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源