论文标题
对应和稳定的同义理论
Correspondences and stable homotopy theory
论文作者
论文摘要
给出了一种从一般类别中的对称环对象产生对象和光谱类别的一般方法。作为一种应用,通过在代数封闭的磁场上定义的交换对称环光谱,从模块中恢复了光谱$ sh $的稳定同义理论。另一个应用程序从相关光谱类别的光谱模块中恢复了稳定的动机同义理论$ sh(k)$。
A general method of producing correspondences and spectral categories out of symmetric ring objects in general categories is given. As an application, stable homotopy theory of spectra $SH$ is recovered from modules over a commutative symmetric ring spectrum defined in terms of framed correspondences over an algebraically closed field. Another application recovers stable motivic homotopy theory $SH(k)$ from spectral modules over associated spectral categories.