论文标题
用于药物反应预测的混合量子神经网络
Hybrid quantum neural network for drug response prediction
论文作者
论文摘要
癌症是全球死亡的主要原因之一。它是由多种基因突变引起的,这使疾病的每一个实例都独特。由于化学疗法可能会产生极严重的副作用,因此每个患者都需要一个个性化的治疗计划。找到最大化药物有益作用并最大程度地减少其不良副作用的剂量至关重要。深度神经网络自动化并改善药物选择。但是,他们需要大量的数据进行培训。因此,需要使用更少数据的机器学习方法。杂交量子神经网络被证明可以在训练数据可用性有限的问题中提供潜在的优势。我们提出了一种新型的混合量子神经网络,以基于卷积,图卷积和深度量子神经层的组合,该层有8吨,具有363层。我们测试了癌症数据集中药物敏感性的基因组学降低的模型,并表明杂交量子模型在预测IC50药物有效性值方面比其经典类似物的表现优于其经典类似物。拟议的混合量子机学习模型是迈向深度量子数据有效算法的一步,其中数千个量子门可以解决个性化医学中的问题,在此,数据收集是一个挑战。
Cancer is one of the leading causes of death worldwide. It is caused by a variety of genetic mutations, which makes every instance of the disease unique. Since chemotherapy can have extremely severe side effects, each patient requires a personalized treatment plan. Finding the dosages that maximize the beneficial effects of the drugs and minimize their adverse side effects is vital. Deep neural networks automate and improve drug selection. However, they require a lot of data to be trained on. Therefore, there is a need for machine-learning approaches that require less data. Hybrid quantum neural networks were shown to provide a potential advantage in problems where training data availability is limited. We propose a novel hybrid quantum neural network for drug response prediction, based on a combination of convolutional, graph convolutional, and deep quantum neural layers of 8 qubits with 363 layers. We test our model on the reduced Genomics of Drug Sensitivity in Cancer dataset and show that the hybrid quantum model outperforms its classical analog by 15% in predicting IC50 drug effectiveness values. The proposed hybrid quantum machine learning model is a step towards deep quantum data-efficient algorithms with thousands of quantum gates for solving problems in personalized medicine, where data collection is a challenge.