论文标题
mglens:基于仿真的宇宙学推断的重力弱透镜模拟
MGLenS: Modified gravity weak lensing simulations for emulation-based cosmological inference
论文作者
论文摘要
我们提出了MGLENS,这是一系列针对宇宙剪切数据分析和预测的一系列修饰的重力镜头模拟,其中宇宙学和修饰的重力参数同时变化。基于同伴论文中提出的Forge and Bridge $ n $ Body Migulation套件,我们构建了500,000度$^2 $的模拟阶段-IV镜头数据,对一对用于训练仿真器的4维体积进行了采样。我们根据透镜能力谱利用了$ f(r)$和NDGP理论预测在宇宙宇宙宇宙学推断套件中实施的镜头分析来验证mglens的准确性。 Fisher分析表明,这种调查的绝大多数约束功率仅来自最高的红移星系。我们从完全可能的样本中进一步发现,宇宙剪切可以在日志$ _ {10} \ left [f_ {r_0} \ right] <-5.24 $和log $ $ _ {10}} \ weft [h_0 r_c \ right] cation> -05 $的情况下,在log $ _ {10} \ left的修改后的重力参数上达到95%的Cl限制。并包括缩放最高$ \ ell = 5000 $。这种调查设置实际上可以以超过$3σ$ pusitive $ f(r)$值检测到大于$ 3 \ times 10^{ - 6} $和$ h_0 r_c $小于1.0。比例削减为$ \ ell = 3000 $减少了$ s_8 $和修改后的重力参数之间的变性破裂,而光度红移不确定性似乎在我们的错误预算中起卑鄙的作用。我们最终探讨了使用错误的重力模型分析数据的后果,并报告许多可能情况的灾难性偏见。在接受期刊后,将公开可公开使用MGLENS模拟,锻造和桥梁模拟器以及宇宙界面模块。
We present MGLenS, a large series of modified gravity lensing simulations tailored for cosmic shear data analyses and forecasts in which cosmological and modified gravity parameters are varied simultaneously. Based on the FORGE and BRIDGE $N$-body simulation suites presented in companion papers, we construct 500,000 deg$^2$ of mock Stage-IV lensing data, sampling a pair of 4-dimensional volumes designed for the training of emulators. We validate the accuracy of MGLenS with inference analyses based on the lensing power spectrum exploiting our implementation of $f(R)$ and nDGP theoretical predictions within the cosmoSIS cosmological inference package. A Fisher analysis reveals that the vast majority of the constraining power from such a survey comes from the highest redshift galaxies alone. We further find from a full likelihood sampling that cosmic shear can achieve 95% CL constraints on the modified gravity parameters of log$_{10}\left[ f_{R_0}\right] < -5.24$ and log$_{10}\left[ H_0 r_c\right] > -0.05$, after marginalising over intrinsic alignments of galaxies and including scales up to $\ell=5000$. Such a survey setup could in fact detect with more than $3σ$ confidence $f(R)$ values larger than $3 \times 10^{-6}$ and $H_0 r_c$ smaller than 1.0. Scale cuts at $\ell=3000$ reduce the degeneracy breaking between $S_8$ and the modified gravity parameters, while photometric redshift uncertainty seem to play a subdominant role in our error budget. We finally explore the consequences of analysing data with the wrong gravity model, and report the catastrophic biases for a number of possible scenarios. The Stage-IV MGLenS simulations, the FORGE and BRIDGE emulators and the cosmoSIS interface modules will be made publicly available upon journal acceptance.