论文标题

从高原发光度推断II型II-P超新星祖细胞

Inferring Type II-P Supernova Progenitor Masses from Plateau Luminosities

论文作者

Barker, Brandon L., O'Connor, Evan P., Couch, Sean M.

论文摘要

将核心崩溃的超新星爆炸与其大型恒星祖细胞的特性联系起来是超新星科学的长期且充满挑战的目标。最近,Barker等。 (2022)使用有效的模型提出了球形对称中微子驱动的核心偏移超新星(CCSN)模拟的祖细胞景观的横晶光曲线。他们发现II-P型CCSN光曲线的高原光度与祖先的末端铁核质量之间存在紧密的关系。值得注意的是,这使我们能够仅使用光度法来限制祖细胞特性。我们使用Barker等2022的关系分析了II-P型CCSN光曲线的大量观察样品,并估算了铁核质量的分布。推断的分布与恒星进化模型的铁核质量的分布非常匹配,并且含有含有高质量铁的核心核心,这些核心含有高质量的铁核,这些核心暗示了来自非常质量的前代数据的贡献。我们使用铁心质量的分布来推断观测数据中祖细胞的最小和最大质量。使用贝叶斯推理方法来定位最佳初始质量函数参数,我们发现M $ _ {\ Mathrm {minrm {min}} = 9.8^{+0.37} _ { - 0.27} $和m $ $ _ {\ \ mathrm {max}}} = 24.0.0^imast osity in+3.9}

Connecting observations of core-collapse supernova explosions to the properties of their massive star progenitors is a long-sought, and challenging, goal of supernova science. Recently, Barker et al. (2022) presented bolometric light curves for a landscape of progenitors from spherically symmetric neutrino-driven core-collapse supernova (CCSN) simulations using an effective model. They find a tight relationship between the plateau luminosity of the Type II-P CCSN light curve and the terminal iron core mass of the progenitor. Remarkably, this allows us to constrain progenitor properties with photometry alone. We analyze a large observational sample of Type II-P CCSN light curves and estimate a distribution of iron core masses using the relationship of Barker et al 2022. The inferred distribution matches extremely well with the distribution of iron core masses from stellar evolutionary models, and namely, contains high-mass iron cores that suggest contributions from very massive progenitors in the observational data. We use this distribution of iron core masses to infer minimum and maximum mass of progenitors in the observational data. Using Bayesian inference methods to locate optimal initial mass function parameters, we find M$_{\mathrm{min}}=9.8^{+0.37}_{-0.27}$ and M$_{\mathrm{max}}=24.0^{+3.9}_{-1.9}$ solar masses for the observational data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源