论文标题

部分可观测时空混沌系统的无模型预测

Model Vectors

论文作者

Prager, John

论文摘要

在本文中,我们讨论了一种解决数字序列问题的新方法,其中给出了遵循未陈述的规则的数字序列,并应推断出缺失的术语。我们开发了将测试序列分解为已知碱基序列的线性组合的方法,并使用分解权重预测缺失项。我们表明,如果在预期基本序列之前提出假设,则可以创建模型向量,其中带有输入的点产生将产生结果。这是令人惊讶的,因为它意味着可以解决隐藏规则的序列问题。模型向量可以通过矩阵反转或应用于原始向量的新型组合函数创建。描述了一种从输入中计算最可能的模型向量的启发式算法。最后,我们在数字序列问题测试套件上评估了算法。

In this article, we discuss a novel approach to solving number sequence problems, in which sequences of numbers following unstated rules are given, and missing terms are to be inferred. We develop a methodology of decomposing test sequences into linear combinations of known base sequences, and using the decomposition weights to predict the missing term. We show that if assumptions are made ahead of time of the expected base sequences, then a Model Vector can be created, where a dot-product with the input will produce the result. This is surprising since it means sequence problems can be solved with no knowledge of the hidden rule. Model vectors can be created either by matrix inversion or by a novel combination function applied to primitive vectors. A heuristic algorithm to compute the most likely model vector from the input is described. Finally we evaluate the algorithm on a suite of number sequence problem tests.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源