论文标题
改进的三角洲求和方法,用于跨间隔和时间关系数据的过滤子集,用于更快的当前价值选择
An improved method of delta summation for faster current value selection across filtered subsets of interval and temporal relational data
论文作者
论文摘要
关系数据库中的聚合是通过哈希和分类间隔数据来完成的,这在计算上昂贵,并且随着数据量的增长而缩放较差。 在本文中,我们展示了如何使用Delta摘要值而不是绝对值来表示关系属性中的定量间隔和时间序列数据。对确定与某些最大时间戳相对应的行进行排序的需求被否定,从而将时间复杂性从至少O(n log(n))降低到O(n)到O(n)和改善查询执行时间。我们在关系代数中说明了这种新方法,以呈现实现算法,并在两种领先的RDBMS产品中测试实现,以不使用正常等效物。 我们发现,这种三角洲求和技术对于具有添加剂,数值数据的用例最有效,有必要经常获得最新值,而行中的红色红色基数为10^5。我们的实验发现,提出的新三角求和技术的执行速度比等效的标准选择方法的执行速度最高22.4%,在某些情况下,总体查询成本最高24.0%,将I/O负载降低了60.6%,多达60.6%,但与CPU的时间和不高度分配相比,较高的问题和不高的效果,不高的效果,不高的效果,并且不确定性地分配了高高的效果。平台。
Aggregation in relational databases is accomplished through hashing and sorting interval data, which is computationally expensive and scales poorly as the data volumes grow. In this paper, we show how quantitative interval and time-series data in relational attributes can be represented using delta summary values rather than absolute values. The need for sorting to determine the row corresponding to some maximum timestamp is negated, reducing the time complexity from at least O(n log(n)) towards O(n) and improving query execution times. We illustrate this new method in the relational algebra, present the implementation algorithmically, and test an implementation in two leading RDBMS products against the use of normal equivalents. We found this delta summation technique to be most effective for use cases with additive, numerical data upon which it is necessary to frequently obtain the latest values, and where the row cardinalities are in the order of 10^5. Our experiments found the proposed new delta summation technique could execute faster than the equivalent standard selection method by up to 22.4%, reducing the overall query cost in some circumstances by up to 24.0%, reducing I/O load by up to 60.6%, but with increased query costs for write operations, an increase in CPU time and memory allocation, uncertain performance with very low or very high cardinalities and inconsistent results across different RDBMS platforms.