论文标题

一维一般扩散的时间分开

Separating Times for One-Dimensional General Diffusions

论文作者

Criens, David, Urusov, Mikhail

论文摘要

在过滤空间上进行两个概率度量的分离时间是延长的停止时间,可捕获等效和奇异性之间的相变。更具体地说,两个概率度量在分离时间和以后的单数之前是等效的。在本文中,我们调查了两个一维规则连续强的马尔可夫过程的两个定律的分离时间,即所谓的一般扩散,这些扩散是通过比例功能和速度测量方法进行参数化的。我们的主要结果是表示相应的分离时间为((松散地说)通过速度和尺度表征的确定性集的打击时间。由于打击时间相当易于理解,因此我们的结果可以访问明确且易于检查的足够和必要的条件,以实现(本地)绝对连续和/或单数的两种一般扩散定律。大多数相关的文献都治疗了随机微分方程的情况。在我们的环境中,我们遇到了几个新颖的功能,这一方面是由于一般的速度和规模造成的,另一方面我们不排除(瞬时或粘性)反射的事实。这些新功能在各种示例中进行了讨论。作为我们的主要定理的应用,我们研究了无套利概念无免费午餐,而单个资产金融市场的消失风险(NFLVR),该市场(折扣)资产被建模为一般扩散,从下面(例如,非阴性)限制。更确切地说,我们得出了NFLVR的确定性标准,并确定(唯一的)等效的局部Martingale度量是自然量表上一般扩散的定律。

The separating time for two probability measures on a filtered space is an extended stopping time which captures the phase transition between equivalence and singularity. More specifically, two probability measures are equivalent before their separating time and singular afterwards. In this paper, we investigate the separating time for two laws of general one-dimensional regular continuous strong Markov processes, so-called general diffusions, which are parameterized via scale functions and speed measures. Our main result is a representation of the corresponding separating time as (loosely speaking) a hitting time of a deterministic set which is characterized via speed and scale. As hitting times are fairly easy to understand, our result gives access to explicit and easy-to-check sufficient and necessary conditions for two laws of general diffusions to be (locally) absolutely continuous and/or singular. Most of the related literature treats the case of stochastic differential equations. In our setting we encounter several novel features, which are due to general speed and scale on the one hand, and to the fact that we do not exclude (instantaneous or sticky) reflection on the other hand. These new features are discussed in a variety of examples. As an application of our main theorem, we investigate the no arbitrage concept no free lunch with vanishing risk (NFLVR) for a single asset financial market whose (discounted) asset is modeled as a general diffusion which is bounded from below (e.g., non-negative). More precisely, we derive deterministic criteria for NFLVR and we identify the (unique) equivalent local martingale measure as the law of a certain general diffusion on natural scale.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源