论文标题
Ralibev:雷达和激光雷达BEV融合学习锚盒免费对象检测系统
RaLiBEV: Radar and LiDAR BEV Fusion Learning for Anchor Box Free Object Detection Systems
论文作者
论文摘要
在自动驾驶中,激光雷达和雷达对于环境感知至关重要。激光雷达提供精确的3D空间传感信息,但在不利的天气中挣扎。相反,由于其特定的波长,雷达信号可以穿透雨水或雾气,但容易受到噪声干扰。最近的最先进的作品表明,雷达和激光雷达的融合会导致在不利天气中的良好检测。现有作品采用卷积神经网络体系结构从每个传感器数据中提取特征,然后对齐和汇总两个分支特征,以预测对象检测结果。但是,由于标签分配和融合策略的简单设计,这些方法的预测边界框的精度较低。在本文中,我们提出了一个基于Bird的视图融合学习融合的无框对象检测系统,该对象检测系统融合了从雷达范围 - 齐路热图和激光雷达点云中得出的特征,以估算可能的对象。已经设计了不同的标签分配策略,以促进前景或背景锚点的分类与相应的边界框回归之间的一致性。此外,通过采用新型的交互式变压器模块,进一步增强了所提出的对象检测器的性能。使用最近发表的牛津雷达机器人数据集证明了本文提出的方法的出色性能。在“透明+雾气”训练条件下,我们系统的平均精度显着超过了最先进的方法,即在“透明+雾气”训练条件下,在“透明”和“雾气”测试的情况下,联合(IOU)的交叉点上的最新方法的表现分别为13.1%和19.0%。
In autonomous driving, LiDAR and radar are crucial for environmental perception. LiDAR offers precise 3D spatial sensing information but struggles in adverse weather like fog. Conversely, radar signals can penetrate rain or mist due to their specific wavelength but are prone to noise disturbances. Recent state-of-the-art works reveal that the fusion of radar and LiDAR can lead to robust detection in adverse weather. The existing works adopt convolutional neural network architecture to extract features from each sensor data, then align and aggregate the two branch features to predict object detection results. However, these methods have low accuracy of predicted bounding boxes due to a simple design of label assignment and fusion strategies. In this paper, we propose a bird's-eye view fusion learning-based anchor box-free object detection system, which fuses the feature derived from the radar range-azimuth heatmap and the LiDAR point cloud to estimate possible objects. Different label assignment strategies have been designed to facilitate the consistency between the classification of foreground or background anchor points and the corresponding bounding box regressions. Furthermore, the performance of the proposed object detector is further enhanced by employing a novel interactive transformer module. The superior performance of the methods proposed in this paper has been demonstrated using the recently published Oxford Radar RobotCar dataset. Our system's average precision significantly outperforms the state-of-the-art method by 13.1% and 19.0% at Intersection of Union (IoU) of 0.8 under 'Clear+Foggy' training conditions for 'Clear' and 'Foggy' testing, respectively.