论文标题
从心脏MRI中改善心肌疤痕检测的联合深度学习
Joint Deep Learning for Improved Myocardial Scar Detection from Cardiac MRI
论文作者
论文摘要
从晚期增强心脏磁共振图像(LGE-CMR)对心肌疤痕的自动鉴定受图像噪声和诸如与运动和部分体积效应相关的伪像的限制。本文提出了一个新颖的联合深度学习(JDL)框架,该框架通过同时学习心肌分段来改善此类任务,从而消除了非利益区域的负面影响。与以前的方法将疤痕检测和心肌分割为单独或平行任务相反,我们提出的方法引入了一个消息传递模块,其中心肌分割的信息直接传递以指导疤痕探测器。这个新设计的网络将有效利用这两个相关任务的联合信息,并使用所有可用的心肌分割来源来使疤痕识别受益。我们证明了JDL对LGE-CMR图像的有效性对于自动左心室(LV)疤痕检测,具有改善缺血性和非缺血性心脏病患者的风险预测的巨大潜力,并提高对心脏失败患者心脏重新同步治疗(CRT)的反应率。实验结果表明,我们所提出的方法的表现优于多种最新方法,包括常用的两步分割分类网络,以及间接相互作用子任务的多任务学习方案。
Automated identification of myocardial scar from late gadolinium enhancement cardiac magnetic resonance images (LGE-CMR) is limited by image noise and artifacts such as those related to motion and partial volume effect. This paper presents a novel joint deep learning (JDL) framework that improves such tasks by utilizing simultaneously learned myocardium segmentations to eliminate negative effects from non-region-of-interest areas. In contrast to previous approaches treating scar detection and myocardium segmentation as separate or parallel tasks, our proposed method introduces a message passing module where the information of myocardium segmentation is directly passed to guide scar detectors. This newly designed network will efficiently exploit joint information from the two related tasks and use all available sources of myocardium segmentation to benefit scar identification. We demonstrate the effectiveness of JDL on LGE-CMR images for automated left ventricular (LV) scar detection, with great potential to improve risk prediction in patients with both ischemic and non-ischemic heart disease and to improve response rates to cardiac resynchronization therapy (CRT) for heart failure patients. Experimental results show that our proposed approach outperforms multiple state-of-the-art methods, including commonly used two-step segmentation-classification networks, and multitask learning schemes where subtasks are indirectly interacted.