论文标题
Pynet-V2手机:通过神经网络有效的智障照片处理
PyNet-V2 Mobile: Efficient On-Device Photo Processing With Neural Networks
论文作者
论文摘要
移动摄影的重要性越来越大,尽管有移动相机传感器的限制,但仍需要快速和性能的原始图像处理管道,能够产生良好的视觉结果。尽管基于深度学习的方法可以有效地解决此问题,但它们的计算要求通常仍然太大,无法进行高分辨率的内置图像处理。为了解决这一限制,我们提出了一种专门为边缘设备设计的新型Pynet-V2移动CNN体系结构,能够直接在1.5秒的手机上处理原始的12MP照片,并产生高知觉照片质量。为了训练和评估所提出的解决方案的性能,我们使用了现实世界中的fujifilm Ultraisp数据集,该数据集由数千个由专业的中型式富士摄像机和受欢迎的索尼移动相机传感器捕获的成千上万的RAW-RGB图像对。结果表明,Pynet-V2移动模型可以实质上超过传统ISP管道的质量,同时表现优于先前引入的基于神经网络的解决方案,该解决方案设计用于快速图像处理。此外,我们表明所提出的体系结构也与最新的移动AI加速器(例如NPU或APU)兼容,该加速器可用于将模型的潜伏期进一步降低到0.5秒。本文使用的数据集,代码和预培训模型可在项目网站上找到:https://github.com/gmalivenko/pynet-v2
The increased importance of mobile photography created a need for fast and performant RAW image processing pipelines capable of producing good visual results in spite of the mobile camera sensor limitations. While deep learning-based approaches can efficiently solve this problem, their computational requirements usually remain too large for high-resolution on-device image processing. To address this limitation, we propose a novel PyNET-V2 Mobile CNN architecture designed specifically for edge devices, being able to process RAW 12MP photos directly on mobile phones under 1.5 second and producing high perceptual photo quality. To train and to evaluate the performance of the proposed solution, we use the real-world Fujifilm UltraISP dataset consisting on thousands of RAW-RGB image pairs captured with a professional medium-format 102MP Fujifilm camera and a popular Sony mobile camera sensor. The results demonstrate that the PyNET-V2 Mobile model can substantially surpass the quality of tradition ISP pipelines, while outperforming the previously introduced neural network-based solutions designed for fast image processing. Furthermore, we show that the proposed architecture is also compatible with the latest mobile AI accelerators such as NPUs or APUs that can be used to further reduce the latency of the model to as little as 0.5 second. The dataset, code and pre-trained models used in this paper are available on the project website: https://github.com/gmalivenko/PyNET-v2