论文标题

使用语法演化技术的运行时数据中心温度预测

Runtime data center temperature prediction using Grammatical Evolution techniques

论文作者

Zapater, Marina, Risco-Martín, José L., Arroba, Patricia, Ayala, José L., Moya, José M., Hermida, Román

论文摘要

数据中心是巨大的电力消费者,既是计算所需的能量,又是将服务器保持在热红线以下所需的冷却。最小化冷却成本的最常见技术是增加数据室温度。但是,为了避免可靠性问题并提高能源效率,有必要预测可变冷却设置下的服务器达到的温度。由于数据室的复杂热动力学,准确的运行时数据中心温度预测仍然是一个重要的挑战。通过使用晶状演化技术,本文提出了一种用于生成数据中心温度模型的方法,以及在可变冷却设置下的CPU和入口温度的运行时间预测。与时间昂贵的计算流体动力学技术相反,我们的模型不需要有关问题的特定知识,可以在任意数据中心中使用,如果条件发生变化,并且在运行时预测期间的开销可忽略不计。我们的模型通过使用真实数据中心方案的痕迹对我们的模型进行了培训和测试。我们的结果表明,我们如何在数据室中充分预测服务器的温度,预测误差分别低于CPU和服务器入口温度的2 C和0.5 C。

Data Centers are huge power consumers, both because of the energy required for computation and the cooling needed to keep servers below thermal redlining. The most common technique to minimize cooling costs is increasing data room temperature. However, to avoid reliability issues, and to enhance energy efficiency, there is a need to predict the temperature attained by servers under variable cooling setups. Due to the complex thermal dynamics of data rooms, accurate runtime data center temperature prediction has remained as an important challenge. By using Gramatical Evolution techniques, this paper presents a methodology for the generation of temperature models for data centers and the runtime prediction of CPU and inlet temperature under variable cooling setups. As opposed to time costly Computational Fluid Dynamics techniques, our models do not need specific knowledge about the problem, can be used in arbitrary data centers, re-trained if conditions change and have negligible overhead during runtime prediction. Our models have been trained and tested by using traces from real Data Center scenarios. Our results show how we can fully predict the temperature of the servers in a data rooms, with prediction errors below 2 C and 0.5 C in CPU and server inlet temperature respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源