论文标题
$ su(3)$ - 希格斯理论的监禁 - 限制过渡
Confinement-deconfinement transition in $SU(3)$-Higgs theory
论文作者
论文摘要
我们研究了对禁令转换的晶格截止效果,以及$ su(3)$ - 希格斯理论的$ z_3 $对称性,$ 3+1 $尺寸。这项研究中的希格斯是一个复杂的三胞胎,具有消失的裸质量和四分之一的耦合。晶格截止值是通过改变临时晶格站点的数量($n_τ$)来调节的。我们的结果表明,禁闭方式的性质取决于$N_τ$。对于$n_τ= 2 $,发现过渡是一阶过渡的终点,并且是$n_τ\ ge 3 $的第一阶。对$ z_3 $对称性敏感的Polyakov环和其他可观察到的分布表明,$ Z_3 $显式破坏的强度随$N_τ$而降低。最多可达$ t \ simeq 2t_c $,$ z_3 $状态之间的自由能差会以$n_τ$减少,这表明在连续限制中实现了$ z_3 $对称性。
We study lattice cutoff effects on the confinement-deconfinement transition and the $Z_3$ symmetry in $SU(3)$-Higgs theory in $3+1$ dimensions. The Higgs in this study is a complex triplet with vanishing bare mass and quartic coupling. The lattice cutoff is regulated by varying the number of temporal lattice sites, $N_τ$. Our results show that the nature of the confinement-deconfinement transition depends on $N_τ$. For $N_τ=2$ the transition is found to be the end point of a first-order transition and is first order for $N_τ\ge 3$. The distributions of the Polyakov loop and other observables, sensitive to the $Z_3$ symmetry, show that the strength of $Z_3$ explicit breaking decreases with $N_τ$. Up to $T\simeq 2T_c$, the free energy difference between $Z_3$ states decreases with $N_τ$, suggesting the realization of $Z_3$ symmetry in the continuum limit.