论文标题
通过Riemannian歧管上的弹性Dirichlet到Neumann地图确定LAMé系数
Determining Lamé coefficients by elastic Dirichlet-to-Neumann map on a Riemannian manifold
论文作者
论文摘要
对于Lamé运算符$ \ Mathcal {l} _ {λ,μ} $,具有可变系数$λ$和$μ$的$λ$和$μ$,带有光滑的Riemannian歧管$(m,g),带有光滑的边界$ \ partial m $,我们给出了全部符号,以表达完整的表达式,以表达完整的dirostic dirostic diriclet to dire dire diremann to umann to umann nneymann $λ。我们表明,$λ_{λ,μ} $唯一确定$ \ partial m $上的lamé系数的所有订单的部分衍生物。此外,对于非空的开放子集$γ\ subset \ partial m $,假设歧管和lamé系数是真正的分析性最高为$γ$,我们证明$λ_{λ_,λ,μ} $唯一确定整个级别的lamé系数在整个级别$ \ bar bar {m} $上。
For the Lamé operator $\mathcal{L}_{λ,μ}$ with variable coefficients $λ$ and $μ$ on a smooth compact Riemannian manifold $(M,g)$ with smooth boundary $\partial M$, we give an explicit expression for full symbol of the elastic Dirichlet-to-Neumann map $Λ_{λ,μ}$. We show that $Λ_{λ,μ}$ uniquely determines partial derivatives of all orders of the Lamé coefficients $λ$ and $μ$ on $\partial M$. Moreover, for a nonempty open subset $Γ\subset\partial M$, suppose that the manifold and the Lamé coefficients are real analytic up to $Γ$, we prove that $Λ_{λ,μ}$ uniquely determines the Lamé coefficients on the whole manifold $\bar{M}$.