论文标题

$ \ mathbb {z} $上的本地nilpotent多项式

Locally nilpotent polynomials over $\mathbb{Z}$

论文作者

Sengupta, Sayak

论文摘要

对于多项式$ u(x)$ in $ \ mathbb {z} [x] $和$ r \ in \ mathbb {z} $,我们考虑$ u(x)$ at $ r $,$ r $,$ r $,$ \ mathcal {o} _u} _u(o} _u(r)(r)的轨道:我们在这里提出两个问题:(i)多项式$ u $是$ 0 \ in \ Mathcal {o} _u(r)$和(ii)多项式的多项式是什么,哪些$ 0 \ in \ in \ not \ mathcal {o} _u(o} _U(r)_u(r)$ p $ p $ p $ p $ p $ 0}在本文中,我们对(ii)所保留的多项式进行了分类。我们还为某些特殊的$ r'$ s提供了一些结果,可以回答(i)。

For a polynomial $u(x)$ in $\mathbb{Z}[x]$ and $r\in\mathbb{Z}$, we consider the orbit of $u(x)$ at $r$, $\mathcal{O}_u(r):=\{u(r),u(u(r)),\ldots\}$. We ask two questions here: (i) what are the polynomials $u$ for which $0\in \mathcal{O}_u(r)$ and (ii) what are the polynomials for which $0\not\in \mathcal{O}_u(r)$ but, modulo every prime $p$, $0\in \mathcal{O}_u(r)$? In this paper we classify the polynomials for which (ii) holds. We also present some results for some special $r'$s for which (i) can be answered.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源