论文标题
非线性优先附件的平行和I/O高效算法
Parallel and I/O-Efficient Algorithms for Non-Linear Preferential Attachment
论文作者
论文摘要
优先依恋是许多网络模型的核心,旨在复制现实世界网络的特征。为了模拟附件过程,进行统计检验或获得基准的输入数据,需要有效的算法,该算法能够根据这些模型生成大图。 现有的图形生成器是针对最简单的模型进行了优化的,其中到达网络中的新节点与较早的节点连接到概率$ p(h)\ propto d $ d $,该节点是线性地取决于早期节点$ h $的$ d $的。然而,某些网络可以通过更通用的附件概率$ p(h)\ propto f(d)$ $ f \ colon \ colon \ mathbb n〜 \ to〜 \ mathbb r $ $进行解释。在这里,多项式情况$ f(d)= d^α$其中$α\ in \ mathbb r _ {> 0} $特别有趣。 在本文中,我们提出了根据更通用模型生成图形的有效算法。我们首先为多项式模型设计了一种简单而最佳的顺序算法。然后,我们通过识别独立样品的批次并在添加许多节点时获得近乎最佳的加速度来并行化算法。此外,我们提出了一种I/O高效算法,甚至可以用于完全通用模型。为了展示算法的效率和可扩展性,我们进行了一项实验研究,并将其性能与现有解决方案进行比较。
Preferential attachment lies at the heart of many network models aiming to replicate features of real world networks. To simulate the attachment process, conduct statistical tests, or obtain input data for benchmarks, efficient algorithms are required that are capable of generating large graphs according to these models. Existing graph generators are optimized for the most simple model, where new nodes that arrive in the network are connected to earlier nodes with a probability $P(h) \propto d$ that depends linearly on the degree $d$ of the earlier node $h$. Yet, some networks are better explained by a more general attachment probability $P(h) \propto f(d)$ for some function $f \colon \mathbb N~\to~\mathbb R$. Here, the polynomial case $f(d) = d^α$ where $α\in \mathbb R_{>0}$ is of particular interest. In this paper, we present efficient algorithms that generate graphs according to the more general models. We first design a simple yet optimal sequential algorithm for the polynomial model. We then parallelize the algorithm by identifying batches of independent samples and obtain a near-optimal speedup when adding many nodes. In addition, we present an I/O-efficient algorithm that can even be used for the fully general model. To showcase the efficiency and scalability of our algorithms, we conduct an experimental study and compare their performance to existing solutions.