论文标题
估计理论中量子力学的优势
Advantages of quantum mechanics in the estimation theory
论文作者
论文摘要
量子估计理论是用量子力学的现代语言对随机统计理论的重新制定。实际上,密度操作员在经典概率理论和统计中的概率分布函数的作用类似。但是,在古典理论中使用概率分布的功能是建立在似乎足够清晰的前提上的。而在量子理论中,由于其非交换性质,与操作员的情况不同。通过利用这种差异,量子估计理论旨在达到超测量精度,而经典资源本来是不可能的。在本论文中,我们回顾了古典估计理论的所有基本原理。接下来,我们将分析扩展到量子估计理论。由于量子力学的非交换性,我们证明了QFI和相应QCRB的不同家族。我们比较了这些界限,并讨论了它们在单参数和多参数估计案例中的可访问性。我们还将HCRB引入最有用的替代方案,适用于多参数估计协议。由于量子状态在实践中最容易获得,因此我们研究了这些类型的量子状态的形式,研究了量子估计理论。我们以完全普遍的态度制定了高斯州的量子估计理论,从其第一矩和第二矩来制定。此外,我们解决了使用高斯量子资源的动机及其在现实噪声下达到标准量子限制方面的优势。在这种情况下,我们提出和分析了一种旨在利用量子高斯纠缠状态以估计嘈杂的高斯环境下的位移参数的测量方案。
Quantum estimation theory is a reformulation of random statistical theory with the modern language of quantum mechanics. In fact, the density operator plays a role similar to that of probability distribution functions in classical probability theory and statistics. However, the use of the probability distribution functions in classical theories is founded on premises that seem intuitively clear enough. Whereas in quantum theory, the situation with operators is different due to its non-commutativity nature. By exploiting this difference, quantum estimation theory aims to attain ultra-measurement precision that would otherwise be impossible with classical resources. In this thesis, we reviewed all the fundamental principles of classical estimation theory. Next, we extend our analysis to quantum estimation theory. Due to the non-commutativity of quantum mechanics, we prove the different families of QFIs and the corresponding QCRBs. We compared these bounds and discussed their accessibility in the single-parameter and multiparameter estimation cases. We also introduce HCRB as the most informative alternative bound suitable for multiparameter estimation protocols. Since the quantum state of light is the most accessible in practice, we studied the quantum estimation theory with the formalism of these types of quantum states. We formulate, with complete generality, the quantum estimation theory for Gaussian states in terms of their first and second moments. Furthermore, we address the motivation behind using Gaussian quantum resources and their advantages in reaching the standard quantum limits under realistic noise. In this context, we propose and analyze a measurement scheme that aims to exploit quantum Gaussian entangled states to estimate the displacement parameters under a noisy Gaussian environment.