论文标题
$ \ mathrm {rcd}^{*}(k,n)$ spaces是半透明的,简单地连接
$\mathrm{RCD}^{*}(K,N)$ spaces are semi-locally simply connected
论文作者
论文摘要
Mondino-wei表明,任何$ \ mathrm {rcd}^{*}(k,n)$ space $(x,d,d,\ mathfrak {m})$均具有通用封面。我们证明,对于任何点$ x \ in x $和$ r> 0 $,都存在$ r <r $,以便$ b_r(x)$中的任何循环在$ b_r(x)$中均可缩放;特别是,$ x $是半局部的连接,并且$ x $的通用封面是简单地连接的。这概括了作者的早期工作,即任何RICCI限制空间都可以半透明地连接。
It was shown by Mondino-Wei that any $\mathrm{RCD}^{*}(K,N)$ space $(X,d,\mathfrak{m})$ has a universal cover. We prove that for any point $x \in X$ and $R>0$, there exists $r<R$ such that any loop in $B_r(x)$ is contractible in $B_R(x)$; in particular, $X$ is semi-locally simply connected and the universal cover of $X$ is simply connected. This generalizes the author's earlier work that any Ricci limit space is semi-locally simply connected.