论文标题

手势识别移动设备中的802.11AD MMWave传感器

Hand gesture recognition using 802.11ad mmWave sensor in the mobile device

论文作者

Ren, Yuwei, Lu, Jiuyuan, Beletchi, Andrian, Huang, Yin, Karmanov, Ilia, Fontijne, Daniel, Patel, Chirag, Xu, Hao

论文摘要

我们使用智能手机中的802.11AD 60GHz(MMWAVE)技术探索了AI辅助手势识别的可行性。范围多普勒信息(RDI)是通过使用脉冲多普勒雷达进行手势识别获得的。我们构建了一个原型系统,其中雷达传感和WLAN通信波形可以通过时间划分双工(TDD)共存,以演示实时的手持推断。它可以收集传感数据并预测100毫秒内的手势。首先,我们为实时特征处理构建管道,这对于偶尔的帧量在数据流中是可靠的。实施了RDI序列恢复以处理连续数据流中的帧掉落,并应用于数据增强。其次,分析了不同的手势RDI,手指和手动运动可以清楚地显示出独特的特征。第三,对五个典型的手势(滑动,棕榈握,拉力,手指滑动和噪音)进行了实验,并探索了分类框架以分割具有任意输入的连续手势序列中的不同手势。我们在大型多人数据集上评估了我们的体系结构,并使用一个CNN + LSTM模型报告> 95%的精度。此外,开发了一个纯CNN模型,以适合实施设备的实施,从而最大程度地减少了推论潜伏期,功耗和计算成本。该CNN模型的准确性仅为93%以上,只有2.29k参数。

We explore the feasibility of AI assisted hand-gesture recognition using 802.11ad 60GHz (mmWave) technology in smartphones. Range-Doppler information (RDI) is obtained by using pulse Doppler radar for gesture recognition. We built a prototype system, where radar sensing and WLAN communication waveform can coexist by time-division duplex (TDD), to demonstrate the real-time hand-gesture inference. It can gather sensing data and predict gestures within 100 milliseconds. First, we build the pipeline for the real-time feature processing, which is robust to occasional frame drops in the data stream. RDI sequence restoration is implemented to handle the frame dropping in the continuous data stream, and also applied to data augmentation. Second, different gestures RDI are analyzed, where finger and hand motions can clearly show distinctive features. Third, five typical gestures (swipe, palm-holding, pull-push, finger-sliding and noise) are experimented with, and a classification framework is explored to segment the different gestures in the continuous gesture sequence with arbitrary inputs. We evaluate our architecture on a large multi-person dataset and report > 95% accuracy with one CNN + LSTM model. Further, a pure CNN model is developed to fit to on-device implementation, which minimizes the inference latency, power consumption and computation cost. And the accuracy of this CNN model is more than 93% with only 2.29K parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源