论文标题

交替的隐式投影SGD及其有效的变体,用于等于相等的双重优化

Alternating Implicit Projected SGD and Its Efficient Variants for Equality-constrained Bilevel Optimization

论文作者

Xiao, Quan, Shen, Han, Yin, Wotao, Chen, Tianyi

论文摘要

捕获机器学习问题固有的嵌套结构的随机二聚体优化在许多最新应用中都广受欢迎。现有关于双层优化的作品主要考虑不受约束的问题或受约束的上层问题。本文认为,上下级别的相等性约束的随机双层优化问题。通过利用平等约束问题的特殊结构,该论文首先提出了一种交替的隐式投影SGD方法,并建立了$ \ tilde {\ cal o}(ε^{ - 2})$样品复杂性,该复杂性与Alset \ citep \ citep {Chen20221closed biles clieversed biles corne biles consects cite promptition complactity complactity为了进一步节省投影成本,本文介绍了两种交替的隐式投影效率的SGD方法,其中一种算法享受$ \ tilde {\ cal o}(\ cal o}(ε^{ - 2}/t) o}(ε^{ - 1.5}/t^{\ frac {\ frac {3} {4}})$下级投影复杂性,具有$ {\ cal o}(t)$下层批量的大小,而另一个则享受$ \ tilde {\ cal o}(\ cal o}(\ cal o}(\ cal o} $^lipter and-luper and-luper and-luper and-luper and-luper and-luper and-luper and-1.5} { - 1.5} { - 1.5} { - 1.5}) $ {\ cal o}(1)$批量尺寸。已经提出了用于联合双杆的优化,以展示我们算法的经验性能。我们的结果表明,与随机单级优化问题一样有效地解决了具有强大较低级别问题的相等限制的二线优化。

Stochastic bilevel optimization, which captures the inherent nested structure of machine learning problems, is gaining popularity in many recent applications. Existing works on bilevel optimization mostly consider either unconstrained problems or constrained upper-level problems. This paper considers the stochastic bilevel optimization problems with equality constraints both in the upper and lower levels. By leveraging the special structure of the equality constraints problem, the paper first presents an alternating implicit projected SGD approach and establishes the $\tilde{\cal O}(ε^{-2})$ sample complexity that matches the state-of-the-art complexity of ALSET \citep{chen2021closing} for unconstrained bilevel problems. To further save the cost of projection, the paper presents two alternating implicit projection-efficient SGD approaches, where one algorithm enjoys the $\tilde{\cal O}(ε^{-2}/T)$ upper-level and $\tilde{\cal O}(ε^{-1.5}/T^{\frac{3}{4}})$ lower-level projection complexity with ${\cal O}(T)$ lower-level batch size, and the other one enjoys $\tilde{\cal O}(ε^{-1.5})$ upper-level and lower-level projection complexity with ${\cal O}(1)$ batch size. Application to federated bilevel optimization has been presented to showcase the empirical performance of our algorithms. Our results demonstrate that equality-constrained bilevel optimization with strongly-convex lower-level problems can be solved as efficiently as stochastic single-level optimization problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源