论文标题

学习神经最佳插值模型和求解器

Learning Neural Optimal Interpolation Models and Solvers

论文作者

Beauchamp, Maxime, Thompson, Joseph, Georgenthum, Hugo, Febvre, Quentin, Fablet, Ronan

论文摘要

从观察数据中重建无间隙信号对于众多应用域(例如地球科学和基于空间的地球观察)来说,是一个关键的挑战,当可用的传感器或数据收集过程导致不规则采样且嘈杂的观察结果。最佳插值(OI),也称为Kriging,提供了一个理论框架来解决高斯过程(GP)的插值问题。相关的计算复杂性对于N维张量和观察量越来越多,已经出现了丰富的文献,可以使用集合方法,稀疏方案或迭代方法来解决此问题。在这里,我们介绍了一个神经OI计划。它用卷积自动编码器和可训练的迭代梯度求解器利用了各种配方。从理论上等同于OI公式,可训练的求解器在处理固定和非平稳的线性时空GPS时,渐近求解器会渐近地收敛到OI溶液。通过双层优化公式,我们将学习步骤和训练损失的选择与OI的理论特性联系起来,OI是一个公正的估计器,具有最小的误差差异。 2D+T合成GP数据集的数值实验证明了从数据中学习计算效率和可扩展的OI模型和求解器的建议方案的相关性。如卫星衍生的地球物理动力学的现实世界中插值问题所示,所提出的框架还扩展到非线性和多模式插值问题,并且在处理非常高的数据速率时明显优于先进的插值方法。

The reconstruction of gap-free signals from observation data is a critical challenge for numerous application domains, such as geoscience and space-based earth observation, when the available sensors or the data collection processes lead to irregularly-sampled and noisy observations. Optimal interpolation (OI), also referred to as kriging, provides a theoretical framework to solve interpolation problems for Gaussian processes (GP). The associated computational complexity being rapidly intractable for n-dimensional tensors and increasing numbers of observations, a rich literature has emerged to address this issue using ensemble methods, sparse schemes or iterative approaches. Here, we introduce a neural OI scheme. It exploits a variational formulation with convolutional auto-encoders and a trainable iterative gradient-based solver. Theoretically equivalent to the OI formulation, the trainable solver asymptotically converges to the OI solution when dealing with both stationary and non-stationary linear spatio-temporal GPs. Through a bi-level optimization formulation, we relate the learning step and the selection of the training loss to the theoretical properties of the OI, which is an unbiased estimator with minimal error variance. Numerical experiments for 2D+t synthetic GP datasets demonstrate the relevance of the proposed scheme to learn computationally-efficient and scalable OI models and solvers from data. As illustrated for a real-world interpolation problems for satellite-derived geophysical dynamics, the proposed framework also extends to non-linear and multimodal interpolation problems and significantly outperforms state-of-the-art interpolation methods, when dealing with very high missing data rates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源