论文标题

联合图卷积用于分析大脑结构和功能连接组

Joint Graph Convolution for Analyzing Brain Structural and Functional Connectome

论文作者

Li, Yueting, Wei, Qingyue, Adeli, Ehsan, Pohl, Kilian M., Zhao, Qingyu

论文摘要

大脑的白色 - 摩尔(微)结构结构促进了神经元种群之间的同步,从而产生了富有图案的功能连接。系统神经科学的一个基本问题是确定通过扩散张量成像和静止状态功能MRI量化的结构和功能网络的最佳方法。作为网络分析的最新方法之一,图形卷积网络(GCN)已分别用于分析功能和结构网络,但尚未应用于探索网络间关系。在这项工作中,我们建议通过在相应的大脑区域之间添加网络之间的两个网络,以便可以通过单个GCN直接分析关节结构 - 功能图。网络间边缘的重量是可以学习的,反映了整个大脑之间的不均匀结构连接耦合强度。我们将联合GCN根据其功能性和微观结构的白人 - 一种网络,预测来自国家酒精和神经发育联盟(NCANDA)国家酒精和神经发育联盟的662名参与者的年龄和性别。我们的结果支持所提出的联合GCN优于现有的多模式图学习方法,用于分析结构和功能网络。

The white-matter (micro-)structural architecture of the brain promotes synchrony among neuronal populations, giving rise to richly patterned functional connections. A fundamental problem for systems neuroscience is determining the best way to relate structural and functional networks quantified by diffusion tensor imaging and resting-state functional MRI. As one of the state-of-the-art approaches for network analysis, graph convolutional networks (GCN) have been separately used to analyze functional and structural networks, but have not been applied to explore inter-network relationships. In this work, we propose to couple the two networks of an individual by adding inter-network edges between corresponding brain regions, so that the joint structure-function graph can be directly analyzed by a single GCN. The weights of inter-network edges are learnable, reflecting non-uniform structure-function coupling strength across the brain. We apply our Joint-GCN to predict age and sex of 662 participants from the public dataset of the National Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA) based on their functional and micro-structural white-matter networks. Our results support that the proposed Joint-GCN outperforms existing multi-modal graph learning approaches for analyzing structural and functional networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源