论文标题

计算功能磁共振成像的时间变异性可改善智力的预测

Accounting for Temporal Variability in Functional Magnetic Resonance Imaging Improves Prediction of Intelligence

论文作者

Li, Yang, Ma, Xin, Sunderraman, Raj, Ji, Shihao, Kundu, Suprateek

论文摘要

基于神经影像学的智力和认知能力的预测方法已经在文献中迅速发展。在不同的神经影像模式中,基于功能连通性(FC)的预测显示出巨大的希望。大多数文献都专注于使用静态FC的预测,但是与基于动态FC或区域水平功能磁共振成像(fMRI)次数系列的预测相比,这种分析的优点的研究有限。为了说明fMRI数据中的时间动力学,我们提出了一个涉及双向长期记忆(BI-LSTM)方法的深神经网络,该方法还结合了特征选择机制。提出的管道通过有效的GPU计算框架实现,并应用于基于区域级fMRI时间序列和动态FC的智能得分。我们比较了基于从青少年脑认知发展(ABCD)研究中获得的静态FC,动态FC和区域水平序列的不同智能测量的预测性能,涉及接近7000个人。我们的详细分析表明,与区域级别时间序列或动态FC相比,静态FC的预测性能始终具有较低的预测性能,而动态FC对于单峰休息和任务fMRI实验,并且在几乎所有情况下都使用任务和休息功能的组合。此外,基于区域级别时间序列的拟议的BI-LSTM管道还确定了跨任务和休息fMRI实验的几个共享和差异重要的大脑区域,以驱动智能预测。对所选特征的重测分析显示在交叉验证折叠之间的可靠性很强。鉴于ABCD研究的样本量很大,我们的结果提供了有力的证据,表明可以通过考虑fMRI的时间变化来实现智力的卓越预测。

Neuroimaging-based prediction methods for intelligence and cognitive abilities have seen a rapid development in literature. Among different neuroimaging modalities, prediction based on functional connectivity (FC) has shown great promise. Most literature has focused on prediction using static FC, but there are limited investigations on the merits of such analysis compared to prediction based on dynamic FC or region level functional magnetic resonance imaging (fMRI) times series that encode temporal variability. To account for the temporal dynamics in fMRI data, we propose a deep neural network involving bi-directional long short-term memory (bi-LSTM) approach that also incorporates feature selection mechanism. The proposed pipeline is implemented via an efficient GPU computation framework and applied to predict intelligence scores based on region level fMRI time series as well as dynamic FC. We compare the prediction performance for different intelligence measures based on static FC, dynamic FC, and region level time series acquired from the Adolescent Brain Cognitive Development (ABCD) study involving close to 7000 individuals. Our detailed analysis illustrates that static FC consistently has inferior prediction performance compared to region level time series or dynamic FC for unimodal rest and task fMRI experiments, and in almost all cases using a combination of task and rest features. In addition, the proposed bi-LSTM pipeline based on region level time series identifies several shared and differential important brain regions across task and rest fMRI experiments that drive intelligence prediction. A test-retest analysis of the selected features shows strong reliability across cross-validation folds. Given the large sample size from ABCD study, our results provide strong evidence that superior prediction of intelligence can be achieved by accounting for temporal variations in fMRI.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源