论文标题
游离Malliavin-Stein-Dirichlet方法:量子马尔可夫操作员的多维半学近似值和混乱
Free Malliavin-Stein-Dirichlet method: multidimensional semicircular approximations and chaos of a quantum Markov operator
论文作者
论文摘要
我们结合了自由Stein内核和游离Malliavin演算的概念,以在自由(二次)Wasserstein距离下提供定量界限,以在多变量的半圆形近似值中进行自相关矢量矢量值的多个Wigner积分。在途中,我们针对与这些半圆形家族相关的潜在,在协方差矩阵的情况下,针对修改的非晶状体熵推断出HSI不平等。证明的策略是基于涉及自由Stein差异的功能不平等现象。我们获得了一个界限,该结合取决于每个组件的第二和第四自由累积物。然后,我们将这些结果应用于一些示例,例如在非交换性分数布朗运动中,边际功能性breuer-major clt中的边际收敛性,我们为$ q $ $ sepacementirculars operators}}的半学位差异提供了自由Stein差异的绑定。最后,我们开发了一个抽象的设置,可以在何处建立一个免费的Stein内核,以相对于半圆形潜力:与量子马尔可夫半群相关的量子混乱,其$ l^2 $ generator $δ$可以写成是一个真正可接近的衍生$δ$δ$的正方形,价值符合广场可集成的双方式双向物中的平方型biocorses或commo of the the commo of the Commoce superessions。
We combine the notion of free Stein kernel and the free Malliavin calculus to provide quantitative bounds under the free (quadratic) Wasserstein distance in the multivariate semicircular approximations for self-adjoint vector-valued multiple Wigner integrals. On the way, we deduce an HSI inequality for a modified non-microstates free entropy with respect to the potential associated with these semicircular families in the case of non-degeneracy of the covariance matrix. The strategy of the proofs is based on functional inequalities involving the free Stein discrepancy. We obtain a bound which depends on the second and fourth free cumulant of each component. We then apply these results to some examples such as the convergence of marginals in the free functional Breuer-Major CLT for the non commutative fractional Brownian motion, and we provide a bound for the free Stein discrepancy with respect to semicircular potentials for $q$-semicirculars operators}. Lastly, we develop an abstract setting on where it is possible to construct a free Stein Kernel with respect to the semicircular potential: the quantum chaos associated to a quantum Markov semigroup whose $L^2$ generator $Δ$ can be written as the square of a real closable derivation $δ$ valued into the square integrable bi-processes or into a direct sum of the coarse correspondence.