论文标题

超导niobium尖端电子束源

Superconducting Niobium Tip Electron Beam Source

论文作者

Johnson, Cameron W., Schmid, Andreas K., Mankos, Marian, Röpke, Robin, Kerker, Nicole, Hwang, Ing-Shouh, Wong, Ed K., Ogletree, D. Frank, Minor, Andrew M., Stibor, Alexander

论文摘要

现代电子显微镜和光谱是研究基本和应用科学中量子和生物材料的结构和组成的关键技术。高分辨率的光谱技术和被像差校正的显微镜通常受到当前可用光束源的相对较大的能量分布的限制。单色仪可以改善这一点,而丢失大多数梁电流的显着缺点。在这里,我们研究了5.2 K处的单晶型niobium尖端电子场的场发射特性,远低于超导过渡温度。发射机制造过程可以生成两种尖端构型,有或没有纳米螺纹在顶点处,从而强烈影响场发射能分布。没有纳米螺纹的几何形状具有远光灯电流,长期稳定性,能量宽度约为100 MeV。光线电流可以通过氙气吸附增加两个数量级。我们还研究了高达82 K的发射极性能,即使在液氮冷却温度下,当顶端纳米 - 刺激存在时,梁的能量宽度也可能低于40 MeV。此外,在正常和超导温度下研究了场发射的空间和时间电子电子相关性,并讨论了诺丁汉加热的影响。这种新的单色源将允许电子显微镜,光谱和高碳量子应用中前所未有的精度和分辨率。

Modern electron microscopy and spectroscopy is a key technology for studying the structure and composition of quantum and biological materials in fundamental and applied sciences. High-resolution spectroscopic techniques and aberration-corrected microscopes are often limited by the relatively large energy distribution of currently available beam sources. This can be improved by a monochromator, with the significant drawback of losing most of the beam current. Here, we study the field emission properties of a monocrystalline niobium tip electron field emitter at 5.2 K, well below the superconducting transition temperature. The emitter fabrication process can generate two tip configurations, with or without a nano-protrusion at the apex, strongly influencing the field-emission energy distribution. The geometry without the nano-protrusion has a high beam current, long-term stability, and an energy width of around 100 meV. The beam current can be increased by two orders of magnitude by xenon gas adsorption. We also studied the emitter performance up to 82 K and demonstrated the beam's energy width can be below 40 meV even at liquid nitrogen cooling temperatures when an apex nano-protrusion is present. Furthermore, the spatial and temporal electron-electron correlations of the field emission are studied at normal and superconducting temperatures and the influence of Nottingham heating is discussed. This new monochromatic source will allow unprecedented accuracy and resolution in electron microscopy, spectroscopy, and high-coherence quantum applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源