论文标题
联合自适应及时调整多域协作学习
Federated Adaptive Prompt Tuning for Multi-Domain Collaborative Learning
论文作者
论文摘要
联合学习(FL)使多个客户能够在不透露数据的情况下协作培训全球模型。先前的研究通常需要培训完整的模型参数。但是,强大的预训练模型的出现使得在佛罗里达州的可学习参数较少的情况下,可以实现更高的性能。在本文中,我们提出了一种联合自适应及时调整算法(FEDAPT),以使用强大的基础模型(例如剪辑)进行多域协作图像分类。与直接联合及时调整相比,我们的核心思想是为每个测试样本自适应解锁特定的域知识,以便为它们提供个性化的提示。为了实现此想法,我们设计了一个自适应提示调谐模块,该模块由元提示,自适应网络和一些键组成。服务器随机生成一组键,并为每个客户端分配一个唯一的密钥。然后,所有客户端与本地数据集和冷冻密钥合作培训全球自适应网络和META提示。最终,全局聚合模型可以根据每个测试样本的域特征分配个性化的提示。我们在两个不同的设置上对两个多域图像分类数据集进行了广泛的实验 - 受监督和无监督的。结果表明,FEDAPT可以在训练有素的模型的参数数量的少于10 \%的情况下实现更好的性能,并且全球模型可以同时在不同的客户端域中表现良好。源代码可在\ url {https://github.com/leondada/fedapt}中获得。
Federated learning (FL) enables multiple clients to collaboratively train a global model without disclosing their data. Previous researches often require training the complete model parameters. However, the emergence of powerful pre-trained models makes it possible to achieve higher performance with fewer learnable parameters in FL. In this paper, we propose a federated adaptive prompt tuning algorithm, FedAPT, for multi-domain collaborative image classification with powerful foundation models, like CLIP. Compared with direct federated prompt tuning, our core idea is to adaptively unlock specific domain knowledge for each test sample in order to provide them with personalized prompts. To implement this idea, we design an adaptive prompt tuning module, which consists of a meta prompt, an adaptive network, and some keys. The server randomly generates a set of keys and assigns a unique key to each client. Then all clients cooperatively train the global adaptive network and meta prompt with the local datasets and the frozen keys. Ultimately, the global aggregation model can assign a personalized prompt to CLIP based on the domain features of each test sample. We perform extensive experiments on two multi-domain image classification datasets across two different settings -- supervised and unsupervised. The results show that FedAPT can achieve better performance with less than 10\% of the number of parameters of the fully trained model, and the global model can perform well in diverse client domains simultaneously. The source code is available at \url{https://github.com/leondada/FedAPT}.