论文标题
部分可观测时空混沌系统的无模型预测
Lagrangian displacement field estimators in cosmology
论文作者
论文摘要
晚期非线性拉格朗日位移场与初始场高度相关,因此重建它可以使我们能够提取原始的宇宙学信息。我们以前的工作[1]仔细研究了使用参考文献提出的迭代方法从晚期密度场重建的位移场。 [2]并发现它没有完全收敛到真实的基础位移字段(例如$ \ sim 8 \%$ offset $ k \ sim 0.2 \ ihmpc $ in $ z = 0.6 $)。我们还为重建领域构建了拉格朗日扰动理论模型,但是该模型无法解释以前工作中真实和重建领域之间的差异。由于样本的离散性,据推测,差异的主要来源被推测为位移估计量中的数值伪像。在本文中,我们开发了两个新的位移场估计量,以减少这种数值离散效应,标准化动量估计器〜(NME)和恢复后的恢复估计值〜(RRE)。我们证明了差异参考。 [1]报告不是由于数值伪像。我们得出结论,参考文献。 [2]无法在我们研究的红移处完全重构非线性位移场的形状,而它仍然是一种有效的BAO重建方法。同时,通过使用有效的现场理论方法在重建过程中正确考虑对紫外线敏感的术语,我们将重建位移领域的理论模型提高了近五次,从$ \ sim 15 \%15 \%$到$ k \ sim 0.2 \ sim 0.2 \ ihmpc $的几个\%\%\%\%,以redshmpc $ z $ z $ z = 0.6 $ z = 0.6 $ 6.6 = 0.6 $ 6.
The late-time nonlinear Lagrangian displacement field is highly correlated with the initial field, so reconstructing it could enable us to extract primordial cosmological information. Our previous work [1] carefully studied the displacement field reconstructed from the late time density field using the iterative method proposed by Ref. [2] and found that it does not fully converge to the true, underlying displacement field (e.g., $\sim 8\%$ offset at $k\sim 0.2 \ihMpc$ at $z=0.6$). We also constructed the Lagrangian perturbation theory model for the reconstructed field, but the model could not explain the discrepancy between the true and the reconstructed fields in the previous work. The main sources of the discrepancy were speculated to be a numerical artifact in the displacement estimator due to the discreteness of the sample. In this paper, we develop two new estimators of the displacement fields to reduce such numerical discreteness effect, the normalized momentum estimator~(NME) and the rescaled resumed estimator~(RRE). We show that the discrepancy Ref. [1] reported is not due to the numerical artifacts. We conclude that the method from Ref. [2] cannot fully reconstruct the shape of the nonlinear displacement field at the redshift we studied, while it is still an efficient BAO reconstruction method. In parallel, by properly accounting for the UV-sensitive term in a reconstruction procedure with an effective field theory approach, we improve the theoretical model for the reconstructed displacement field, by almost five times, from $\sim 15\%$ to the level of a few \% at $k\sim 0.2\ihMpc$ at the redshift $z=0.6$.