论文标题

关于痕量比方法和Fisher的判别分析,用于鲁棒分类

On the trace ratio method and Fisher's discriminant analysis for robust multigroup classification

论文作者

Ferrandi, Giulia, Kravchenko, Igor V., Hochstenbach, Michiel E., Oliveira, M. Rosário

论文摘要

我们比较了多组分类问题的两个不同的线性降低策略:痕量比方法和费舍尔的判别分析。最近,由于其计算效率以及偶尔更好的分类结果,痕量比率优化已受欢迎。但是,统计理解仍然不完整。我们研究和比较两种方法的属性。然后,我们提出了痕量比方法的强大版本,以处理数据中异常值的存在。我们在污染环境中重新解释了构造与痕量比的渐近扰动。最后,我们使用经典和健壮的估计器比较了痕量比方法和Fisher对合成和真实数据集的判别分析。

We compare two different linear dimensionality reduction strategies for the multigroup classification problem: the trace ratio method and Fisher's discriminant analysis. Recently, trace ratio optimization has gained in popularity due to its computational efficiency, as well as the occasionally better classification results. However, a statistical understanding is still incomplete. We study and compare the properties of the two methods. Then, we propose a robust version of the trace ratio method, to handle the presence of outliers in the data. We reinterpret an asymptotic perturbation bound for the solution to the trace ratio, in a contamination setting. Finally, we compare the performance of the trace ratio method and Fisher's discriminant analysis on both synthetic and real datasets, using classical and robust estimators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源