论文标题

液体固定界面的解吸速率

The Desorption Rate at Liquid-Solid Interface

论文作者

Jaiswal, Krishna, Metiu, Horia, Agarwal, Vishal

论文摘要

我们使用蒙特卡洛和分子动力学模拟的组合,使用一个简单的通用模型来研究与液体接触的固体表面的解吸。系统的行为取决于两个参数:固体液体相互作用能的强度$ε_{ls} $和液体液体相互作用能量的强度$ε_{ll} $。与固体表面的接触会修饰相邻液体的结构。取决于参数的大小$ε_{ls} $和$ε_{ll} $液体的密度在距表面的距离为五个原子层的距离。对于参数的其他值,表面附近的液体的密度远低于散装液体的密度,这一过程有时称为露水。为了描述解吸速率,我们确定了最初吸附并仍在时间上吸附的数字$ n(t)原子。该数量的平均值呈指数衰减,这使我们能够定义解吸率系数$ k_ {d} $。我们发现$ k_ {d} $满足Arrhenius关系。指数前的对数是激活能的线性函数(所谓的补偿效果)。我们还检查了两个近似平均场,例如速率常数的理论:一个计算解吸的激活自由能。另一个使用过渡状态理论应用于平均力的潜力。两种方法都无法复制确切的解吸速率常数$ k_ {d} $。我们表明,这种失败是由于存在屏障的实质性衍射(这引入了过渡状态理论中的错误)以及在单个分子的解吸速率中存在巨大波动,而单个分子的解吸速率并未被平均场理论捕获。

We use a simple generic model to study the desorption of atoms from a solid surface in contact with a liquid, by using a combination of Monte Carlo and molecular dynamics simulations. The behavior of the system depends on two parameters: the strength $ε_{LS}$ of the solid-liquid interaction energy and the strength $ε_{LL}$ of the liquid-liquid interaction energy. The contact with the solid surface modifies the structure of the adjacent liquid. Depending on the magnitude of the parameters $ε_{LS}$ and $ε_{LL}$ the density of the liquid oscillates with the distance from the surface for as far as five atomic layers. For other values of the parameters the density of the liquid near the surface is much lower than that of the bulk liquid, a process sometimes called dewetting. To describe the desorption rate we have determined the number $N(t)$ of atoms that were adsorbed initially and are still adsorbed at time $t$. The average of this quantity decays exponentially and this allows us to define a desorption rate coefficient $k_{d}$. We found that $k_{d}$ satisfies the Arrhenius relation. The logarithm of the pre-exponential is a linear function of the activation energy (the so-called compensation effect). We have also examined two approximate mean-field like theories of the rate constant: one calculates the activation free energy for desorption; the other uses transition state theory applied to the potential of mean force. Both methods fail to reproduce the exact desorption rate constant $k_{d}$. We show that this failure is due to the presence of substantial recrossing of the barrier (which introduces errors in transition state theory) and the presence of large fluctuations in the desorption rate of individual molecules whose effect is not captured by mean-field theories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源