论文标题
使用双重稀疏的高斯工艺对欧洲古气候的时空建模
Spatiotemporal modeling of European paleoclimate using doubly sparse Gaussian processes
论文作者
论文摘要
古气候学 - 对过去气候的研究 - 超出了气候科学本身,例如在考古学和人类学中了解过去的人类传播。有关地球古气候的信息来自对物理和生物地球化学过程的模拟以及自然存在的档案中发现的代理记录。气候场重建(CFRS)将这些数据组合为统计空间或时空模型。迄今为止,还没有共识时空的古气候模型,该模型在时空中是连续的,会产生不确定性的预测,并且可以包括来自各种来源的数据。高斯过程(GP)模型将具有这些所需的属性;但是,GPS量表与构建CFR的典型幅度的数据不利。我们建议基于稀疏时空GP的最新进展,从而通过将基于诱导变量与GPS的状态空间配方相结合的变异方法来减轻计算负担。我们成功地采用了这种双重稀疏的GP来构建从最后一次冰川气候(LGM)到中新世(MH)的欧洲古气候模型,该模型综合了古气候模拟和化石的花粉代理数据。
Paleoclimatology -- the study of past climate -- is relevant beyond climate science itself, such as in archaeology and anthropology for understanding past human dispersal. Information about the Earth's paleoclimate comes from simulations of physical and biogeochemical processes and from proxy records found in naturally occurring archives. Climate-field reconstructions (CFRs) combine these data into a statistical spatial or spatiotemporal model. To date, there exists no consensus spatiotemporal paleoclimate model that is continuous in space and time, produces predictions with uncertainty, and can include data from various sources. A Gaussian process (GP) model would have these desired properties; however, GPs scale unfavorably with data of the magnitude typical for building CFRs. We propose to build on recent advances in sparse spatiotemporal GPs that reduce the computational burden by combining variational methods based on inducing variables with the state-space formulation of GPs. We successfully employ such a doubly sparse GP to construct a probabilistic model of European paleoclimate from the Last Glacial Maximum (LGM) to the mid-Holocene (MH) that synthesizes paleoclimate simulations and fossilized pollen proxy data.