论文标题
理性均匀品种中最大的偏见舒伯特周期
Maximal disjoint Schubert cycles in rational homogeneous varieties
论文作者
论文摘要
在本文中,我们研究了经典类型的合理均质品种的杂烩环,更具体的,有效的零分配的零分配,以及一种相关的不变性,称为有效的良好分裂性。然后,这些信息用于研究这些品种之间(非)非结构地图存在的问题,从而将先前的结果推广到投射空间和司芒族人。
In this paper we study properties of the Chow ring of rational homogeneous varieties of classical type, more concretely, effective zero divisors of low codimension, and a related invariant called effective good divisibility. This information is then used to study the question of (non)existence of nonconstant maps among these varieties, generalizing previous results for projective spaces and Grassmannians.