论文标题
关于自动编码器的可解释性和适当的潜在分解
On interpretability and proper latent decomposition of autoencoders
论文作者
论文摘要
湍流的动力学倾向于在统计固定状态下仅占据相位空间的一部分。从动态系统的角度来看,这部分是吸引子。湍流吸引子的知识至少对两个目的有用:(i)我们可以对湍流进行物理洞察力(吸引子的形状和几何形状是什么?),(ii)它提供了最少的自由度,以准确描述湍流动力学。自动编码器可以计算最佳潜在空间,这是动力学的低阶表示。如果经过适当的训练且设计正确,自动编码器可以学习湍流吸引子的近似值,如Doan,Racca和Magri(2022)所示。在本文中,我们从理论上解释了自动编码器的转换。首先,我们指出,潜在空间是带有曲线坐标的弯曲歧管,可以用Riemann几何形状的简单工具对其进行分析。其次,我们表征了潜在空间的几何特性。我们在数学上得出了度量张量,该度量张量提供了对歧管的数学描述。第三,我们提出了一种方法 - 适当的潜在分解(PLD),该方法概括了在自动编码器潜在空间上湍流的正交分解。该分解在弯曲的潜在空间中发现了主要方向。这项理论工作为解释自动编码器并创建湍流模型减少了计算机会。
The dynamics of a turbulent flow tend to occupy only a portion of the phase space at a statistically stationary regime. From a dynamical systems point of view, this portion is the attractor. The knowledge of the turbulent attractor is useful for two purposes, at least: (i) We can gain physical insight into turbulence (what is the shape and geometry of the attractor?), and (ii) it provides the minimal number of degrees of freedom to accurately describe the turbulent dynamics. Autoencoders enable the computation of an optimal latent space, which is a low-order representation of the dynamics. If properly trained and correctly designed, autoencoders can learn an approximation of the turbulent attractor, as shown by Doan, Racca and Magri (2022). In this paper, we theoretically interpret the transformations of an autoencoder. First, we remark that the latent space is a curved manifold with curvilinear coordinates, which can be analyzed with simple tools from Riemann geometry. Second, we characterize the geometrical properties of the latent space. We mathematically derive the metric tensor, which provides a mathematical description of the manifold. Third, we propose a method -- proper latent decomposition (PLD) -- that generalizes proper orthogonal decomposition of turbulent flows on the autoencoder latent space. This decomposition finds the dominant directions in the curved latent space. This theoretical work opens up computational opportunities for interpreting autoencoders and creating reduced-order models of turbulent flows.