论文标题
使用脑电图谱图的运动图像分类
Motor imagery classification using EEG spectrograms
论文作者
论文摘要
脊髓损害引起的肢体运动的丧失是一种残疾,可以在执行日常活动时影响人们。肢体运动的恢复将使脊髓损伤的人更自然地与环境相互作用,这是脑部计算机界面(BCI)系统可能是有益的。对于这样的BCI,检测到肢体运动想象力(MI)可能很重要,在该BCI中,检测到的MI可以指导计算机系统。通过脑电图(EEG)使用MI检测,我们可以识别用户中运动的想象力,并将其转化为物理运动。在本文中,我们利用预先训练的深度学习(DL)算法来分类想象的上肢运动。我们使用一个公开可用的脑电图数据集,其中包含代表七类肢体运动的数据。我们计算时间序列脑电图信号的频谱图,并将其用作MI分类的DL模型的输入。我们使用预训练的DL算法和频谱图将上肢运动分类的新型方法显着改善了七个运动类别的结果。与最近提出的最新方法相比,我们的算法对于分类七个运动的平均准确性为84.9%。
The loss of limb motion arising from damage to the spinal cord is a disability that could effect people while performing their day-to-day activities. The restoration of limb movement would enable people with spinal cord injury to interact with their environment more naturally and this is where a brain-computer interface (BCI) system could be beneficial. The detection of limb movement imagination (MI) could be significant for such a BCI, where the detected MI can guide the computer system. Using MI detection through electroencephalography (EEG), we can recognize the imagination of movement in a user and translate this into a physical movement. In this paper, we utilize pre-trained deep learning (DL) algorithms for the classification of imagined upper limb movements. We use a publicly available EEG dataset with data representing seven classes of limb movements. We compute the spectrograms of the time series EEG signal and use them as an input to the DL model for MI classification. Our novel approach for the classification of upper limb movements using pre-trained DL algorithms and spectrograms has achieved significantly improved results for seven movement classes. When compared with the recently proposed state-of-the-art methods, our algorithm achieved a significant average accuracy of 84.9% for classifying seven movements.