论文标题
$ p $ - 亚种领域和森理论的V-vector捆绑
v-vector bundles on $p$-adic fields and Sen theory via the Hodge-Tate stack
论文作者
论文摘要
我们描述了连续半连续表示的类别及其在$ p $ - adic field $ k $的Galois集团中,系数与Cartier-Witt堆栈的Hodge-Tate座位上的矢量捆绑包中完整的代数关闭中的系数。这也给了古典森理论的新观点。例如,它以几何方式解释了科尔梅斯时期环$ b _ {\ mathrm {sen}} $的类似物的外观。
We describe the category of continuous semilinear representations and their cohomology for the Galois group of a $p$-adic field $K$ with coefficients in a completed algebraic closure via vector bundles on the Hodge-Tate locus of the Cartier-Witt stack. This also gives a new perspective on classical Sen theory; for example it explains the appearance of an analogue of Colmez' period ring $B_{\mathrm{Sen}}$ in a geometric way.