论文标题
琼斯对R.汤普森的群体的表示,不受有限维度的诱导
Jones' representations of R. Thompson's groups not induced by finite-dimensional ones
论文作者
论文摘要
考虑到从希尔伯特空间到平方的任何线性等轴测图,都可以明确构建理查德·汤普森(Richard Thompson)组F的所谓的毕达哥拉斯统一表示。我们在等轴测图上引入了一个条件,这意味着相关表示形式不包含有限维度的任何诱导表示。这提供了此类的第一个结果。我们通过由真实的3个球员参数参数的一系列表示来说明了这个定理,除两个子圈外,所有这些都有此属性。
Given any linear isometry from a Hilbert space to its square one can explicitly construct a so-called Pythagorean unitary representation of Richard Thompson's group F. We introduce a condition on the isometry implying that the associated representation does not contain any induced representations by finite-dimensional ones. This provides the first result of this kind. We illustrate this theorem via a family of representations parametrised by the real 3-sphere for which all of them have this property except two sub-circles.