论文标题

比较传统机器学习模型的解释方法第1部分:当前方法的概述并量化其分歧

Comparing Explanation Methods for Traditional Machine Learning Models Part 1: An Overview of Current Methods and Quantifying Their Disagreement

论文作者

Flora, Montgomery, Potvin, Corey, McGovern, Amy, Handler, Shawn

论文摘要

随着对机器学习(ML)模型的兴趣越来越多,这项两部分研究的第一部分综合了有关解释ML模型全球和本地方面的方法的最新研究。这项研究将解释性与解释性,本地解释性和特征重要性与特征相关性区分开。我们演示和可视化不同的解释方法,如何解释它们,并提供完整的Python软件包(Scikit-nopplain),以允许未来的研究人员探索这些产品。我们还强调了特征排名和特征效应的解释方法之间的经常分歧,并为处理这些分歧提供了实用的建议。我们使用了用于恶劣天气预测和亚冻结道路表面温度预测的ML模型,以推广不同解释方法的行为。对于功能排名,与特定排名相比,在一组顶级功能集(例如,两种方法都同意的6种方法同意)(平均而言,平均两种方法仅在前10个功能集中的2-3个功能的等级同意)上,其共识要多得多。另一方面,只要对相空间进行良好的采样,不同方法的两个特征效应曲线就处于很高的一致性。最后,发现一种鲜为人知的方法,即树的解释器,与特征效应相当,并且随着在地球科学中随机森林的广泛使用和树木解释器的计算易用性,我们建议将其在未来的研究中进行探索。

With increasing interest in explaining machine learning (ML) models, the first part of this two-part study synthesizes recent research on methods for explaining global and local aspects of ML models. This study distinguishes explainability from interpretability, local from global explainability, and feature importance versus feature relevance. We demonstrate and visualize different explanation methods, how to interpret them, and provide a complete Python package (scikit-explain) to allow future researchers to explore these products. We also highlight the frequent disagreement between explanation methods for feature rankings and feature effects and provide practical advice for dealing with these disagreements. We used ML models developed for severe weather prediction and sub-freezing road surface temperature prediction to generalize the behavior of the different explanation methods. For feature rankings, there is substantially more agreement on the set of top features (e.g., on average, two methods agree on 6 of the top 10 features) than on specific rankings (on average, two methods only agree on the ranks of 2-3 features in the set of top 10 features). On the other hand, two feature effect curves from different methods are in high agreement as long as the phase space is well sampled. Finally, a lesser-known method, tree interpreter, was found comparable to SHAP for feature effects, and with the widespread use of random forests in geosciences and computational ease of tree interpreter, we recommend it be explored in future research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源