论文标题
用离散可变编码的逻辑量子击败收支平衡点
Beating the break-even point with a discrete-variable-encoded logical qubit
论文作者
论文摘要
量子误差校正(QEC)旨在通过利用大型希尔伯特空间的冗余来保护逻辑码头免受噪音,在该空间中,一旦发生误差,就可以实时检测和纠正。在大多数QEC代码中,在某些离散变量(例如光子数字)中编码逻辑量子量。这样的编码方案使编码金正交,因此可以在处理后明确提取编码的量子信息。基于此类离散变量的编码,在各个平台上都报告了重复性的QEC演示,但是编码的逻辑量子量子的寿命仍然比整个系统中最好的可用物理量子量的寿命要短,这代表了一个分类点,对于任何QEC代码来说,都需要超过任何QEC代码,而QEC代码是实用的。在这里,我们演示了一个QEC程序,该程序具有在微波腔的光子数状态中编码的逻辑量子,分散耦合到Ancilla超导二极管。通过在Ancilla上施加具有定制频率梳子的脉冲,我们可以重复提取具有高保真度的误差综合征,并相应地使用反馈控制进行误差校正,从而超过了大约16%的寿命增强。我们的工作说明了硬件有效的离散可变QEC代码对可靠的量子信息处理器的潜力。
Quantum error correction (QEC) aims to protect logical qubits from noises by utilizing the redundancy of a large Hilbert space, where an error, once it occurs, can be detected and corrected in real time. In most QEC codes, a logical qubit is encoded in some discrete variables, e.g., photon numbers. Such encoding schemes make the codewords orthogonal, so that the encoded quantum information can be unambiguously extracted after processing. Based on such discrete-variable encodings, repetitive QEC demonstrations have been reported on various platforms, but there the lifetime of the encoded logical qubit is still shorter than that of the best available physical qubit in the entire system, which represents a break-even point that needs to be surpassed for any QEC code to be of practical use. Here we demonstrate a QEC procedure with a logical qubit encoded in photon-number states of a microwave cavity, dispersively coupled to an ancilla superconducting qubit. By applying a pulse featuring a tailored frequency comb to the ancilla, we can repetitively extract the error syndrome with high fidelity and perform error correction with feedback control accordingly, thereby exceeding the break-even point by about 16% lifetime enhancement. Our work illustrates the potential of the hardware-efficient discrete-variable QEC codes towards a reliable quantum information processor.