论文标题
在非均匀磁场的存在下,简化的晶格玻尔兹曼在管流中的准静态近似实现
A simplified lattice Boltzmann implementation of the quasi-static approximation in pipe flows under the presence of non-uniform magnetic fields
论文作者
论文摘要
我们提出了一种简化的晶格玻尔兹曼算法,能够在管道中执行磁性水力动力学(MHD)流量模拟,以示意磁性雷诺数的很小值$ r_m $。在以前的某些工作中,大多数晶格玻尔兹曼模拟都是用$ r_m $的值进行的,靠近雷诺数字的简化矩形几何形状中的流量。原因之一是限制了一些传统的晶格Boltzmann算法处理与MHD中大多数工业应用相关的非常小的磁扩散时间尺度的情况,这些情况需要使用所谓的准静态(QS)近似值。另一个原因与晶格Boltzmann的许多边界条件方法对放松时间参数具有的许多边界条件方法有关。在这项工作中,为了克服上述局限性,我们引入了一种改进的速度和磁场的简化算法,该算法能够直接求解QS近似的方程,而没有其他系统,而无需预处理程序。在这些算法中,通过使用改进的显式沉浸式边界算法来包括固体绝缘边界的效果,该算法的准确性不受$ r_m $的值的影响。在这项工作中,显示了一些具有经典基准测试的验证,以及包括均匀和不均匀磁场在内的示例中的能量平衡的分析。此外,通过研究不稳定流量的示例中,通过研究磁能平衡的演变,可以看到管流中QS近似和MHD规范方程之间描述的场景之间的渐进跃迁。
We propose a single-step simplified lattice Boltzmann algorithm capable of performing magnetohydrodynamic (MHD) flow simulations in pipes for very small values of magnetic Reynolds numbers $R_m$. In some previous works, most lattice Boltzmann simulations are performed with values of $R_m$ close to the Reynolds numbers for flows in simplified rectangular geometries. One of the reasons is the limitation of some traditional lattice Boltzmann algorithms in dealing with situations involving very small magnetic diffusion time scales associated with most industrial applications in MHD, which require the use of the so-called quasi-static (QS) approximation. Another reason is related to the significant dependence that many boundary conditions methods for lattice Boltzmann have on the relaxation time parameter. In this work, to overcome the mentioned limitations, we introduce an improved simplified algorithm for velocity and magnetic fields which is able to directly solve the equations of the QS approximation, among other systems, without preconditioning procedures. In these algorithms, the effects of solid insulating boundaries are included by using an improved explicit immersed boundary algorithm, whose accuracy is not affected by the values of $R_m$. Some validations with classic benchmarks and the analysis of the energy balance in examples including uniform and non-uniform magnetic fields are shown in this work. Furthermore, a progressive transition between the scenario described by the QS approximation and the MHD canonical equations in pipe flows is visualized by studying the evolution of the magnetic energy balance in examples with unsteady flows.