论文标题
部分可观测时空混沌系统的无模型预测
Transfer learning for tensor Gaussian graphical models
论文作者
论文摘要
张量高斯图形模型(GGM),解释张量数据中的条件独立性结构,在许多领域都具有重要的应用。但是,一项研究中的可用张量数据通常由于高收购成本而受到限制。尽管相关的研究可以提供其他数据,但仍然是一个空旷的问题,如何汇集此类异质数据。在本文中,我们为张量GGM提出了一个转移学习框架,即使存在非信息性辅助域,它也可以充分利用信息丰富的辅助域,从而受益于精心设计的数据自适应权重。我们的理论分析表明,通过利用来自辅助域的信息,在许多放松条件下,目标域的估计误差和可变选择一致性的大幅改善。在合成张量图和大脑功能连接网络数据上进行了广泛的数值实验,这证明了该方法的令人满意的性能。
Tensor Gaussian graphical models (GGMs), interpreting conditional independence structures within tensor data, have important applications in numerous areas. Yet, the available tensor data in one single study is often limited due to high acquisition costs. Although relevant studies can provide additional data, it remains an open question how to pool such heterogeneous data. In this paper, we propose a transfer learning framework for tensor GGMs, which takes full advantage of informative auxiliary domains even when non-informative auxiliary domains are present, benefiting from the carefully designed data-adaptive weights. Our theoretical analysis shows substantial improvement of estimation errors and variable selection consistency on the target domain under much relaxed conditions, by leveraging information from auxiliary domains. Extensive numerical experiments are conducted on both synthetic tensor graphs and a brain functional connectivity network data, which demonstrates the satisfactory performance of the proposed method.