论文标题

隐藏半马尔科夫模型中状态持续时间的参数化:心电图中的应用

Parameterization of state duration in Hidden semi-Markov Models: an application in electrocardiography

论文作者

Herrero, Adrián Pérez, Lamas, Paulo Félix, Presedo, Jesús María Rodríguez

论文摘要

这项工作旨在基于从一个示例中学习的时间序列分类提供新的模型。我们假设时间序列可以很好地将其描述为一个参数随机过程,这是一种隐藏的半马尔科夫模型,代表具有可变持续时间的回归模型序列。我们为时间序列模式识别引入了一个参数随机模型,并提供了其参数的最大样本估计。特别是,我们有兴趣检查国家持续时间的两种不同表示形式:i)离散密度分布需要在每个可能的持续时间内进行估计; ii)一个连续密度函数的参数家族,这里是伽马分布,只有两个参数可以估算。对心跳分类的应用揭示了每种替代方案的主要优势和劣势。

This work aims at providing a new model for time series classification based on learning from just one example. We assume that time series can be well characterized as a parametric random process, a sort of Hidden semi-Markov Model representing a sequence of regression models with variable duration. We introduce a parametric stochastic model for time series pattern recognition and provide a maximum-likelihood estimation of its parameters. Particularly, we are interested in examining two different representations for state duration: i) a discrete density distribution requiring an estimate for each possible duration; and ii) a parametric family of continuous density functions, here the Gamma distribution, with just two parameters to estimate. An application on heartbeat classification reveals the main strengths and weaknesses of each alternative.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源