论文标题

Normatch:将归一化流与半监督学习的判别分类器匹配

NorMatch: Matching Normalizing Flows with Discriminative Classifiers for Semi-Supervised Learning

论文作者

Deng, Zhongying, Ke, Rihuan, Schonlieb, Carola-Bibiane, Aviles-Rivero, Angelica I

论文摘要

半监督学习(SSL)旨在使用标记的集合和大量未标记的数据来学习模型。为了更好地利用未标记的数据,最新的SSL方法使用单个判别分类器预测的伪标签。但是,生成的伪标记不可避免地与固有的确认偏差和噪声相关,这极大地影响了模型性能。在这项工作中,我们引入了一个名为Normatch的SSL的新框架。首先,我们引入了一种基于标准化流的新不确定性估计方案,作为辅助分类器,以实施高度某些伪标签,从而增强了歧视性分类器。其次,我们引入了无阈值的样品加权策略,以利用更好的高和低置信伪标签。此外,我们以无标记的数据的分布来利用将流量标准化为模型。这种建模假设可以通过未标记的数据进一步提高生成分类器的性能,从而暗中促进培训更好的判别分类器。我们通过数值和视觉结果证明了Normatch在几个数据集上实现最新性能。

Semi-Supervised Learning (SSL) aims to learn a model using a tiny labeled set and massive amounts of unlabeled data. To better exploit the unlabeled data the latest SSL methods use pseudo-labels predicted from a single discriminative classifier. However, the generated pseudo-labels are inevitably linked to inherent confirmation bias and noise which greatly affects the model performance. In this work we introduce a new framework for SSL named NorMatch. Firstly, we introduce a new uncertainty estimation scheme based on normalizing flows, as an auxiliary classifier, to enforce highly certain pseudo-labels yielding a boost of the discriminative classifiers. Secondly, we introduce a threshold-free sample weighting strategy to exploit better both high and low confidence pseudo-labels. Furthermore, we utilize normalizing flows to model, in an unsupervised fashion, the distribution of unlabeled data. This modelling assumption can further improve the performance of generative classifiers via unlabeled data, and thus, implicitly contributing to training a better discriminative classifier. We demonstrate, through numerical and visual results, that NorMatch achieves state-of-the-art performance on several datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源