论文标题
De Rham堆栈和曲线非常好的分裂
The de Rham stack and the variety of very good splittings of a curve
论文作者
论文摘要
特殊Azumaya代数的相对分裂堆叠在非亚伯式霍奇理论中起着关键作用,用于曲线在积极特征中。在本文中,我们定义并研究了由所谓的非常好的分裂组成的开放式替代品。我们表明,当使用非常好的分裂时,非亚洲杂物同构可保留在多尔贝尔特和de rham侧的可分离基因座。我们还表明,一堆非常好的分裂堆积了一个准标记的驯服模uli空间。结果,我们表明,希钦和de rham-hitchin形态的交叉点构成的派生式推动力是同构的,并且具有同构的异构式同胞分子移植。
The stack of relative splittings of a special Azumaya algebra plays a key role in the Non-Abelian Hodge Theory for curves in positive characteristics. In this paper, we define and study an open substack consisting of the so-called very good splittings. We show that, when using very good splittings, the Non-Abelian Hodge isomorphism preserves the semistable loci on the Dolbeault and the de Rham sides. We also show that the stack of very good splittings admits a quasi-projective tame moduli space. As a consequence, we show that the derived pushforwards of the intersection complexes by the Hitchin and the de Rham-Hitchin morphisms are isomorphic and they have isomorphic perverse cohomology sheaves.