论文标题
$ k $ - 距离魔术标签和长刷图
$k$-Distance Magic Labeling and Long Brush Graphs
论文作者
论文摘要
我们定义标签$ f:$ $ f:$ v(g)$ $ \ rightarrow $ $ \ {1,2,2,\ ldots,n \} $上的图$ g $ of drogn $ n \ geq 3 $ as a \ emph {$ k $ -distance magic}($ k $ -dm-dm) f(w)} $是一个常数,独立于$ u \ in v(g)$中的$ \ partial n_k(u)$ = $ = $ \ {v \ in v(g):d(u,v)= k \} $,$ k \ in \ mathbb {n} $。如果它具有$ k $ -dm标签(l),则Graph $ g $称为\ emph {$ k $ -dm}。 Long Brush是$ v(g)$ = $ \ {u_1,u_2,。 。 。 ,u_n,$ $ v_1,v_2,。 。 。 ,v_ {m} \} $,一个路径$ p_n $ = $ u_1 $ $ $ u_2 $。 。 。 $ u_n $和$ e(g)$ = $ e(p_n)$ $ \ cup $ \ {u_1v_i:$ $ $ $ = 1至$ m \} $ m \} $ $ \ cup $ $ e(<v_1,v_1,v_2,。。。。。。。。。。。。。。。。。。。。。。。。。。。我们用$ lp_ {n,m} $表示该图。在本文中,使用分区技术,我们获得了$ k $ -dm图的家庭,并证明了$ k,n \ geq 3 $,$ m \ geq 2 $和$ k,$ k,m,n \ in \ mathbb {n} $,$ lp_ {n,m} $ k $ -dn $ k $ k $ mm(mm if lp_ if $ mm(mmmm,lp_) $ n $; (ii)对于\ Mathbb {n} _0 $和给定的$ m \ geq 2 $,$ lp _ {\ frac {\ frac {m(m-1)} {2}+k,m} $是$(\ frac {m(m-1)} {2}+k; (iii)对于$ m \ geq 3 $,$ lp_ {1,m} $ = $ k_1(u_1)+(k_ {m_1} \ cup k_ {m_2} \ cup ... \ cup ... \ cup k_ {m_x}) $ m_1+m_2+...+m_x $ = $ m $,$ m_1+m_2 \ m_2 \ geq 3 $和$ m_1,m_2,...,...,m_x,x \ in \ mathbb {n} $,$ lp_ {1,m} $仅与$ u_1 $ y y $ j $ j $ j $ j $ \ {j \} $将订单的$ x $ contant sum partites分区$ m_1,m_2,...,m_x $,$ 1 \ leq j \ leq j \ leq m+1 $; (iv)对于$ m \ geq 2 $,如果$ lp_ {2,m} $包含两个吊坠顶点,则$ lp_ {2,m} $不是$ 2 $ -dm -dm graph; (v)对于$ m \ geq 2 $和$ n \ geq 3 $,如果$ lp_ {n,m} $包含三个吊坠顶点,则$ lp_ {n,m} $不是$ 2 $ -dm-dm graph; (vi)对于$ m_1 $ = 1至22,我们获得了$ lp_ {1,m} $ = $ = $ u_1 +(k_ {m_1} \ cup k_ {m_2})$的所有可能值的所有可能值, $ m_1,m_2 \ in \ mathbb {n} $。
We define a labeling $f:$ $V(G)$ $\rightarrow$ $\{1, 2, \ldots, n\}$ on a graph $G$ of order $n \geq 3$ as a \emph{$k$-distance magic} ($k$-DM) if $\sum_{w\in \partial N_k(u)}{ f(w)}$ is a constant and independent of $u\in V(G)$ where $\partial N_k(u)$ = $\{v\in V(G): d(u, v) = k\}$, $k\in\mathbb{N}$. Graph $G$ is called a \emph{$k$-DM} if it has a $k$-DM labeling(L). Long Brush is a graph $G$ with $V(G)$ = $\{u_1, u_2, . . . , u_n,$ $v_1, v_2, . . . , v_{m}\}$, a path $P_n$ = $u_1$ $u_2$ . . . $u_n$ and $E(G)$ = $E(P_n)$ $\cup$ $\{u_1v_i:$ $i$ = 1 to $m\}$ $\cup$ $E(<v_1, v_2, . . . , v_{m}>)$, $m+n \geq 3$ and $m,n\in\mathbb{N}$. We denoted this graph by $LP_{n, m}$. In this paper, using partition techniques, we obtain families of $k$-DM graphs and prove that $(i)$ For $k,n \geq 3$, $m \geq 2$ and $k,m,n\in\mathbb{N}$, $LP_{n,m}$ is $k$-DM if and only if $m(m-1) \leq 2n$ and $k$ = $n$; (ii) For every $k\in\mathbb{N}_0$ and a given $m \geq 2$, $LP_{\frac{m(m-1)}{2}+k, m}$ is a $(\frac{m(m-1)}{2}+k)$-DM graph; (iii) For $m \geq 3$, $LP_{1,m}$ = $K_1(u_1)+(K_{m_1} \cup K_{m_2} \cup ... \cup K_{m_x})$, $x \geq 2$, $1 \leq m_1 \leq m_2 \leq ... \leq m_x$, $m_1+m_2+...+m_x$ = $m$, $m_1+m_2 \geq 3$ and $m_1,m_2,...,m_x,x\in\mathbb{N}$, $LP_{1,m}$ is 2-DM if and only if $u_1$ is assigned with a suitable $j$ and $J_{m+1}\setminus \{j\}$ is partitioned into $x$ constant sum partites of orders $m_1,m_2,...,m_x$, $1 \leq j \leq m+1$; (iv) For $m \geq 2$ if $LP_{2,m}$ contains two pendant vertices, then $LP_{2,m}$ is not a $2$-DM graph; (v) For $m \geq 2$ and $n \geq 3$, if $LP_{n,m}$ contains three pendant vertices, then $LP_{n,m}$ is not a $2$-DM graph; and (vi) for $m_1$ = 1 to 22, we obtain all possible values of $m$ for which $LP_{1, m}$ = $u_1 + (K_{m_1} \cup K_{m_2})$ is 2-DM, $m_1 \leq m_2$, $m = m_1+m_2 \geq 3$ and $m_1,m_2\in\mathbb{N}$.