论文标题
DeepSense 6G:一个大规模的真实世界多模式传感和通信数据集
DeepSense 6G: A Large-Scale Real-World Multi-Modal Sensing and Communication Dataset
论文作者
论文摘要
本文介绍了DeepSense 6G数据集,该数据集是一个基于现实的多模式传感和通信数据的现实测量的大规模数据集。 DeepSense 6G数据集旨在在多模式感应,沟通和定位的交集中在广泛的应用中推进深度学习研究。本文提供了深)数据集结构的详细概述,采用的测试台,数据收集和处理方法,部署方案以及示例应用程序,目的是促进多模式传感和通信数据集的采用和可重复性。
This article presents the DeepSense 6G dataset, which is a large-scale dataset based on real-world measurements of co-existing multi-modal sensing and communication data. The DeepSense 6G dataset is built to advance deep learning research in a wide range of applications in the intersection of multi-modal sensing, communication, and positioning. This article provides a detailed overview of the DeepSense dataset structure, adopted testbeds, data collection and processing methodology, deployment scenarios, and example applications, with the objective of facilitating the adoption and reproducibility of multi-modal sensing and communication datasets.