论文标题
一个两个城市的故事:鲁棒性深学习中的数据和配置差异
A Tale of Two Cities: Data and Configuration Variances in Robust Deep Learning
论文作者
论文摘要
深度神经网络(DNN)广泛用于许多行业,例如图像识别,供应链,医学诊断和自主驾驶。但是,先前的工作表明,DNN模型的高精度并不意味着较高的鲁棒性(即在新数据集和未来数据集上的一致性表现),因为用于部署模型的输入数据和外部环境(例如软件和模型配置)正在不断变化。因此,确保深度学习的鲁棒性不是一种选择,而是增强业务和消费者信心的优先事项。先前的研究主要集中在模型差异的数据方面。在本文中,我们系统地总结了DNN的鲁棒性问题,并通过两个重要方面(即DNN中的数据和软件配置差异)在整体视图中制定它们。我们还提供了一个预测框架,通过考虑通过基于搜索的优化的镜头来考虑可靠学习的数据和配置来生成代表性方差(反例)。
Deep neural networks (DNNs), are widely used in many industries such as image recognition, supply chain, medical diagnosis, and autonomous driving. However, prior work has shown the high accuracy of a DNN model does not imply high robustness (i.e., consistent performances on new and future datasets) because the input data and external environment (e.g., software and model configurations) for a deployed model are constantly changing. Hence, ensuring the robustness of deep learning is not an option but a priority to enhance business and consumer confidence. Previous studies mostly focus on the data aspect of model variance. In this article, we systematically summarize DNN robustness issues and formulate them in a holistic view through two important aspects, i.e., data and software configuration variances in DNNs. We also provide a predictive framework to generate representative variances (counterexamples) by considering both data and configurations for robust learning through the lens of search-based optimization.