论文标题

UMFUSE:统一的多视图融合用于人类编辑应用

UMFuse: Unified Multi View Fusion for Human Editing applications

论文作者

Jain, Rishabh, Hemani, Mayur, Ceylan, Duygu, Singh, Krishna Kumar, Lu, Jingwan, Sarkar, Mausoom, Krishnamurthy, Balaji

论文摘要

由于其广泛的实际应用,视觉社区已经探索了许多姿势指导的人类编辑方法。但是,这些方法中的大多数仍然使用图像到图像公式,其中将单个图像作为输入给出以产生编辑的图像作为输出。在目标姿势与输入姿势显着不同的情况下,该目标变得不明显。然后,现有方法诉诸于镶嵌或样式转移,以处理遮挡并保留内容。在本文中,我们探讨了多种视图的利用,以最大程度地减少缺失信息的问题,并生成基础人类模型的准确表示。为了从多个观点融合知识,我们设计了一个多视图融合网络,该网络从多个源图像中获取姿势关键点和纹理,并生成可解释的每像素外观检索图。此后,潜在空间合并了单独的网络中的编码(在单视为人类的安息任务上进行训练)。这使我们能够为不同的编辑任务生成准确,精确和视觉上的相干图像。我们在两个新提出的任务上显示了我们的网络的应用 - 多视图人类的重新安息和混合与匹配人类形象的生成。此外,我们研究了单视图编辑和情景的局限性,其中多视图提供了更好的选择。

Numerous pose-guided human editing methods have been explored by the vision community due to their extensive practical applications. However, most of these methods still use an image-to-image formulation in which a single image is given as input to produce an edited image as output. This objective becomes ill-defined in cases when the target pose differs significantly from the input pose. Existing methods then resort to in-painting or style transfer to handle occlusions and preserve content. In this paper, we explore the utilization of multiple views to minimize the issue of missing information and generate an accurate representation of the underlying human model. To fuse knowledge from multiple viewpoints, we design a multi-view fusion network that takes the pose key points and texture from multiple source images and generates an explainable per-pixel appearance retrieval map. Thereafter, the encodings from a separate network (trained on a single-view human reposing task) are merged in the latent space. This enables us to generate accurate, precise, and visually coherent images for different editing tasks. We show the application of our network on two newly proposed tasks - Multi-view human reposing and Mix&Match Human Image generation. Additionally, we study the limitations of single-view editing and scenarios in which multi-view provides a better alternative.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源