论文标题

在Unital完全正面地图上的广义正交度量

Generalized Orthogonal Measures on the Space of Unital Completely Positive Maps

论文作者

Bhattacharya, Angshuman, Kulkarni, Chaitanya J.

论文摘要

EFFROS的经典结果将状态在C*-Algebra上的barycentric分解与状态的GNS表示相对于C*-Algebra的状态空间上的正交度量的分解。在本说明中,我们将这种方法采用在b(h)中值的c*代数上完全正面图的空间,连接了Unital完全正面映射的Barycentric分解,并使同一的最小STinespring膨胀的分离。这将EFFROS在非共同环境中的工作概括。我们通过引入一类特殊的Barycentric措施来做到这一点,我们称之为广义正交措施。我们通过提及一些广义正交度量的一些例子来结束这一说明。

A classical result by Effros connects the barycentric decomposition of a state on a C*-algebra to the disintegration of the GNS representation of the state with respect to an orthogonal measure on the state space of the C*-algebra. In this note, we take this approach to the space of unital completely positive maps on a C*-algebra with values in B(H), connecting the barycentric decomposition of the unital completely positive map and the dis-integration of the minimal Stinespring dilation of the same. This generalizes Effros' work in the non-commutative setting. We do this by introducing a special class of barycentric measures which we call generalized orthogonal measures. We end this note by mentioning some examples of generalized orthogonal measures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源