论文标题
地图的存在$ det^{s^3} $
Existence of the Map $det^{S^3}$
论文作者
论文摘要
在本文中,我们显示了非平凡线性映射的存在$ det^{s^3}:v_d^{\ otimes \ binom {3d} {3d} {3}}} \ k $ to k $ to k $ to k $ to属于$ det^{s^3}的属性(\ otimes_ 3D}(v_ {i,j,k}))= 0 $,如果存在$ 1 \ leq x <y <z <z <t \ leq 3d $,这样$ v_ {x,y,y,z} = v_ {x,y,y,t} = v_ {x,y,t} = v_ {x,z,z,z,z,z,z,t} = v_ {y,z {y,z {y,z,t} $。这给出了[10]的猜想的部分答案。作为一个应用程序,我们使用地图$ det^{s^3} $来研究完整的hypergraph $ k^3_ {3d} $的d-partition,其betti编号为零。我们还讨论了映射的代数和组合属性,$ det^{s^r}:v_d^{\ otimes \ binom {rd} {rd}}} \ k $ to概括了确定性的映射,$ det^{s^2} $ from [9],以及$ det^3} $。
In this paper we show the existence of a nontrivial linear map $det^{S^3}:V_d^{\otimes\binom{3d}{3}}\to k$ with the property that $det^{S^3}(\otimes_{1\leq i<j<k\leq 3d}(v_{i,j,k}))=0$ if there exists $1\leq x<y<z<t\leq 3d$ such that $v_{x,y,z}=v_{x,y,t}=v_{x,z,t}=v_{y,z,t}$. This gives a partial answer to a conjecture from [10]. As an application, we use the map $det^{S^3}$ to study those d-partitions of the complete hypergraph $K^3_{3d}$ that have zero Betti numbers. We also discuss algebraic and combinatorial properties of a map $det^{S^r}:V_d^{\otimes\binom{rd}{r}}\to k$ which generalizes the determinant map, the map $det^{S^2}$ from [9], and $det^{S^3}$.